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Use FPGA resources to boost radar 
system performance
This article discusses critical design trade-offs and obstacles that must 
be overcome to ensure a successful FPGA implementation for radar pulse 
compression. In addition, it discloses the development of a general-purposed 
intellectual property (IP) FPGA core for pulse compression.

By Rodger H. Hosking

Modern radar systems engineers 
seek to dramatically improve per-

formance, target acquisition, tracking 
and identification of their targets. The 
latest generation of field-programmable 
gate arrays (FPGAs), with powerful new 
features, have become the fundamental 
building blocks in advanced radar plat-
forms. FPGAs are enhancing radar system 
performance levels through optimized 
intellectual property (IP) core implemen-
tations for critical compute-intensive 
digital signal processing algorithms such 
as pulse compression and fast Fourier 
transform (FFTs). 

Providing both increased performance 
and fast interface connections, FPGAs 
are vital in the fundamental equation of a  
successful radar development platform. Diverse radar system design  
considerations such as dynamic range, receiver noise reduction, co-site  
interference, signal processing, accuracy and multitarget detection can 
all be enhanced with the additional capabilities FPGAs can offer.

Radar pulse compression basics
Early radar systems transmitted a strong pulse of RF energy and 

displayed reflections of the pulse on the familiar circular display 
screen, whose scanning beam matched the angle of the rotating dish 
antenna. The phosphor “blip” on the radar screen appeared at a radial 
distance from the screen center directly proportional to delay time of 
the reflected signal, and hence its distance. Range and resolution of 
these fixed-frequency pulse systems were limited by their peak power 
levels and pulse widths, respectively. Resolution could be improved by 
narrowing the pulse, but this reduced the outgoing peak energy resulting 
in compromised range performance, and also required wider bandwidth 
operation for both the transmitter and receiver systems.

Pulse compression is a technique that helps overcome these limi-
tations. Instead of a fixed frequency pulse, the transmitted pulse is 
modulated by a specific phase or frequency pattern during a wider 
pulse interval.  The receiver uses a pulse-matched filter to pass reflected 
pulses that match the pattern of the outgoing pulse and reject noise 
and other signals. Since the transmitted pulse is wider, a lower peak 
power output stage can deliver the same amount of transmitted pulse 
energy to maintain range performance. Figure 1 shows a basic block 
diagram of the system.

One popular form of pulse compression modulation is the linear 
frequency sweep, or chirp. The pulse-matched filter in the receiver 
implements a form of correlation to produce a narrow output pulse only 
when the received signal contains the exact frequency chirp pattern in 
the transmit pulse. In this way, the wide transmitted pulse is effectively 

compressed to a narrow pulse at the output of the correlator. The ratio 
of the transmitted pulse to the compressed pulse, known as the pulse 
compression ratio, is equal to B·T, where B is the bandwidth of the 
sweep and T is the transmitted pulse width.

With the narrower compressed pulse, resolution is improved  
dramatically and reasonable range performance can be achieved with 
low-power transmitters. This allows dramatic improvements for all 
radar systems, especially for airborne applications where size, weight 
and power are critical factors.  

This vital advantage obviously mandates increased complexity in 
the signal processing stages of the transmitter and receiver. Hence, 
radar has been one of the prime motivators for advancements in digital 
signal-processing technology.

Implementing a pulse-matched filter
One popular method of implementing a pulse-matched filter takes 

advantage of a well-known DSP technique: correlation of time domain 
signals can be achieved by a multiplication in the frequency domain. 
Intuitively, the frequency domain representation of two correlated 
time waveform signals will have identical frequency domain signatures 
for the portion of the signals with matching patterns. By multiplying 
the two frequency domain vectors (with a complex conjugate applied 
to one of the vectors), the resulting product will produce a match that is 
independent of the time alignment between the two signals. So regardless 
of when the reflected radar signals are received, the pulse matched filter 
will respond uniquely for each target returning energy. When this product 
vector is converted back to the time domain, each target will produce a 
narrow pulse whose delay and amplitude correspond to target distance 
and size, respectively.

Since the FFT converts time domain signals to frequency domain  
signals, and the inverse FFT (IFFT) performs the opposite conversion, 

Figure 1. Pulse compression radar.
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these two algorithms are key blocks in the pulse compression system.
Figure 2 shows a complete digital pulse compression block with 

the FFT at the input to process radar receiver signals. In the center, 
the frequency domain image of the transmitter modulation pattern  
is stored as the reference pulse spectrum. Its complex conjugate is  
multiplied by the frequency domain signal from the FFT to accomplish the  
correlation function. The IFFT stage at the right produces the final time 
domain pulse compressed output signal.

FPGA-based pulse compression radar
The FFT algorithm is usually the most critical operation in pulse 

compression and, therefore, FFT benchmarks are consistently used to 
compare performance among DSP chips.

Since FFTs involve a tremendous number of multiplications, 
the appearance of dedicated hardware multipliers was the single 
most important factor in DSPs to set them apart from conventional  
microprocessors. With the advent of dedicated hardware multipli-
ers in FPGAs, these devices were soon challenging general-purpose  
programmable DSPs for signal processing tasks in many DSP  
applications, especially radar.  

Instead of the one to four multiplier engines found in most DSPs, 

FPGAs are now sporting dozens and even 
hundreds of dedicated hardware multipliers. 
Compared with the iterative multiplications 
performed by program loops in DSPs, multipli-
cations in FPGAs can be executed in parallel to 
deliver unprecedented FFT benchmarks.  

Nevertheless, critical design trade-offs 
and obstacles must be evaluated and over-
come to ensure a successful FPGA imple-
mentation for radar pulse compression. 
This article discusses these issues as they  
were identified and addressed during the 
development cycle of a general-purposed IP 
FPGA core for pulse compression.

Design trade-offs and issues
Two fundamental properties of any DSP 

algorithm are speed and accuracy. A third 
factor for FPGA designs is the number of 
resources (gates, slices, multipliers, etc.) 
consumed. Unlike DSPs with fixed hardware 
resources, FPGAs are offered as a family of 
devices, whose members contain hardware 
resources ranging in quantity by more than 
an order of magnitude. Since algorithm speed 
and accuracy can be traded off for the num-
ber of hardware resources, many different  
architectural choices may be required to maxi-
mize performance for the size, cost and power 
constraints of specific FPGA family members.  
For this reason, a general-purpose IP core 
should be scalable for size vs. performance.
 Operating modes. In order to handle di-

verse classes of targets and a variety of mission 
objectives, pulse compression systems often 
need multiple operational modes to support 
FFTs of different lengths, a range of pulse 
repetition rates, and several levels of dynamic 
range. While FPGAs can be reprogrammed 
by downloading a new configuration code for 
each mode, it’s better to include support for  
all required modes within a given FPGA 
design. In this way, the operator can switch 

quickly and easily between modes by passing 
control parameters to FPGA registers.
 Dynamic range. The frequency chirp is one of the most commonly 

used modulation patterns for radar, and its energy is inherently spread 
across a frequency band. Since the first stage of pulse compression is an 
FFT, this chirp signal results in energy distributed over many FFT bins, 
with relatively low energy levels in any single bin. At the same time, 
radar systems must be able to accommodate strong, fixed frequency 
signals from extraneous interfering sources without overloading.  

This imposes tough dynamic range requirements at the output 
of the FFT stage. With enough headroom to handle the strong  
signals, the smaller distributed frequency components of the chirp still  
need enough bits of resolution to provide accurate correlation in  
the following stages.  

True floating point processing solves this dynamic range problem 
quite well. However, FPGAs are quite inefficient in implementing 
floating point operations, since the native hardware is fixed point. 
In the Xilinx Virtex-II family, for example, the dedicated hardware 
multipliers in FPGAs are fixed point engines, accepting two18-bit 
inputs and producing a 36-bit product. Although a 36-bit result at  
the FFT output may have enough dynamic range, with this type of  
multiplier the subsequent conjugate multiplication stage (see Figure 2)  

Figure 2. Basic pulse compression core.

Figure 3. Maximum performance pulse compression Core 440.

Figure 4. Minimum resource pulse compression Core 440.
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can accept only the 18 most significant of these  
36 bits. This can result in loss of critical signal 
energy of the smaller chirp signal components, 
especially for wide chirp bandwidths.

Combining three or more 18 x 18 multi-
pliers with some additional logic can create 
higher-precision fixed-point multipliers, 
but this quickly consumes multipliers and  
also adds pipeline delays to slow speed  
performance.
 Speed. Pulse compression radar systems 

effort involves minimizing digital signal paths 
so that the system clock can be increased to 
reduce processing time.  

Factors that affect propagation delays are 
logic complexity (several levels of gate logic), 
extended precision arithmetic (as discussed 
above with the higher precision multipliers), 
and the basic speed of the silicon. Complex 
logic and extended precision arithmetic blocks 
can sometimes be partitioned into multiple 
clocked stages in order to boost the clock 
speed, but this added latency might impact a 
critical speed path. All FPGA vendors offer 
devices in a range of silicon speed grades, so 
that buying a faster (more expensive) device, 
may enable a particular design to operate at 
the required clock rate.

Overcoming obstacles
In designing a radar pulse compression 

IP core flexible enough for diverse systems, 
it soon became clear that the conflicting 
demands for size, dynamic range and speed 
would require some clever signal-processing 
techniques and multiple architectures. Some of 
the strategies for meeting these objectives for 
Pentek’s GateFlow 4954-440 pulse compres-
sion IP core are described. The core is targeted 
for the Virtex-II, Virtex-II Pro and Spartan 
device families from Xilinx.

To tackle the dynamic range issue, a major 
design decision was made to use block floating 
point arithmetic throughout to achieve some 
of the accuracy benefits of floating-point math 
while preserving the reduced size benefits of 
fixed-point hardware. This technique involves 
adaptive scaling of all of the points in a vector 
by the same amount, so that the largest point 
just fits in the bit field without overflowing. 

In practice, all of the output points of a 
particular signal-processing stage are stored 
in a RAM. The entire output block (or vector) 
is then scanned to determine the largest point. 
Then all of the points in the block are left-
shifted by the same number of bits required 
to left justify the largest point. This number 
of shifts is then tagged with the block as its 
exponent and passed on to the next stage.

Three block floating point conversion 
stages are incorporated in the Core 440 design 
as shown in Figure 3. With this arrangement, 
block floating point arithmetic maximizes the 
dynamic range of a given word length and 
adaptively scales for changing signal levels 
automatically after each of the three stages. 
The output pulse is delivered in block floating 
point format to preserve accuracy.

To handle varying accuracy requirements 
under this block floating point scheme, the 
Core 440 is offered with three different  
word lengths (mantissa): 16, 20 and 24 
bits. The 16-bit version uses a single 18 
x 18 multiplier stage while the 20-bit and 
24-bit versions use the bulkier compound  

must be capable of processing all reflections 
from an outgoing pulse in a given stage 
before signals arrive from the next pulse. 
Certain modes of operation require a fast  
pulse repetition rate, which drives the  
processing speed requirements of the pulse 
compression engine.  

FPGAs operate as synchronous state 
machines using a system clock to propagate 
data into registers between logic stages.  
A significant portion of the FPGA design  
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multiplier stages described earlier. 
The reference pulse spectrum is stored in a 

RAM array that can be loaded directly through 
a data port. Instead of loading the spectrum 
of the reference pulse, an alternate path is 
provided so that the time domain waveform 
of the reference pulse can be processed by the 
input FFT and then sent into the reference 
pulse spectrum RAM. For fi xed modulation 
patterns for transmitted pulses, the RAM 
needs to be loaded only once, but for adaptive 
systems, a new reference pulse spectrum can 
be loaded for each processing frame.  

Another design decision centered on how 
to support different FFT (and IFFT) sizes or 
block lengths. Parameter entry of the FFT 
size is desirable to support multiple modes 
with a single FPGA design, and 16 k points 
was chosen as a reasonable maximum length. 
However, making provisions to support a 16 k 
point FFT consumes a great deal of the RAM 
resources, forcing customers with smaller 
FFT requirements to use a larger and more 
expensive FPGA than necessary. For this 
reason, four different maximum length FFT 
designs were created for the Core 440: 2 k, 
4 k, 8 k and 16 k points. In each case, the size 
of the FFT is programmable from 64 points 
up to the maximum size in binary steps, simply 
by entering a parameter in a FPGA register.

One additional architectural option was 
deemed important. Since the FFT and the 
IFFT blocks involve nearly identical process-
ing tasks, it is possible to use the same FPGA 
hardware to perform these two operations 
sequentially. If the pulse repetition rate is low 
enough, this can result in a dramatic reduction 
in the number of FPGA resources.

Accordingly, the Core 440 offers two differ-
ent architectures. The maximum performance 
architecture version is shown in Figure 3, 
with two dedicated engines, one for the FFT 
and another for the IFFT. The minimum 
resource architecture, shown in Figure 4, in-
cludes switches at the input and output of the 
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FFT/IFFT block to engage the signal fl ow 
paths at the appropriate times. The resulting 
output of both architectures is identical, so 
users can trade off speed for resource utili-
zation, perhaps allowing the core to fi t in a 
much smaller device or leaving room for 
additional functions.  

Summary
In all, the Core 440 offers three different bit 

widths for the processing engines, four differ-

ent maximum length FFTs, and two different 
speed/resource architectures for a total of 24 
different confi gurations. This fl exibility comes 
in handy since requirements may shift during 
the design cycle.

Although FPGA development tools are 
improving rapidly, nothing replaces the intu-
ition and guidance of an experienced design 
engineer who uses hardware and software 
skills to balance performance needs against the 
physical realities of confi gurable logic. 


