
16 www.rfdesign.com October 2005

DefenseElectronics

Use FPGA resources to boost radar
system performance
This article discusses critical design trade-offs and obstacles that must
be overcome to ensure a successful FPGA implementation for radar pulse
compression. In addition, it discloses the development of a general-purposed
intellectual property (IP) FPGA core for pulse compression.

By Rodger H. Hosking

Modern radar systems engineers
seek to dramatically improve per-

formance, target acquisition, tracking
and identification of their targets. The
latest generation of field-programmable
gate arrays (FPGAs), with powerful new
features, have become the fundamental
building blocks in advanced radar plat-
forms. FPGAs are enhancing radar system
performance levels through optimized
intellectual property (IP) core implemen-
tations for critical compute-intensive
digital signal processing algorithms such
as pulse compression and fast Fourier
transform (FFTs).

Providing both increased performance
and fast interface connections, FPGAs
are vital in the fundamental equation of a
successful radar development platform. Diverse radar system design
considerations such as dynamic range, receiver noise reduction, co-site
interference, signal processing, accuracy and multitarget detection can
all be enhanced with the additional capabilities FPGAs can offer.

Radar pulse compression basics
Early radar systems transmitted a strong pulse of RF energy and

displayed reflections of the pulse on the familiar circular display
screen, whose scanning beam matched the angle of the rotating dish
antenna. The phosphor “blip” on the radar screen appeared at a radial
distance from the screen center directly proportional to delay time of
the reflected signal, and hence its distance. Range and resolution of
these fixed-frequency pulse systems were limited by their peak power
levels and pulse widths, respectively. Resolution could be improved by
narrowing the pulse, but this reduced the outgoing peak energy resulting
in compromised range performance, and also required wider bandwidth
operation for both the transmitter and receiver systems.

Pulse compression is a technique that helps overcome these limi-
tations. Instead of a fixed frequency pulse, the transmitted pulse is
modulated by a specific phase or frequency pattern during a wider
pulse interval. The receiver uses a pulse-matched filter to pass reflected
pulses that match the pattern of the outgoing pulse and reject noise
and other signals. Since the transmitted pulse is wider, a lower peak
power output stage can deliver the same amount of transmitted pulse
energy to maintain range performance. Figure 1 shows a basic block
diagram of the system.

One popular form of pulse compression modulation is the linear
frequency sweep, or chirp. The pulse-matched filter in the receiver
implements a form of correlation to produce a narrow output pulse only
when the received signal contains the exact frequency chirp pattern in
the transmit pulse. In this way, the wide transmitted pulse is effectively

compressed to a narrow pulse at the output of the correlator. The ratio
of the transmitted pulse to the compressed pulse, known as the pulse
compression ratio, is equal to B·T, where B is the bandwidth of the
sweep and T is the transmitted pulse width.

With the narrower compressed pulse, resolution is improved
dramatically and reasonable range performance can be achieved with
low-power transmitters. This allows dramatic improvements for all
radar systems, especially for airborne applications where size, weight
and power are critical factors.

This vital advantage obviously mandates increased complexity in
the signal processing stages of the transmitter and receiver. Hence,
radar has been one of the prime motivators for advancements in digital
signal-processing technology.

Implementing a pulse-matched filter
One popular method of implementing a pulse-matched filter takes

advantage of a well-known DSP technique: correlation of time domain
signals can be achieved by a multiplication in the frequency domain.
Intuitively, the frequency domain representation of two correlated
time waveform signals will have identical frequency domain signatures
for the portion of the signals with matching patterns. By multiplying
the two frequency domain vectors (with a complex conjugate applied
to one of the vectors), the resulting product will produce a match that is
independent of the time alignment between the two signals. So regardless
of when the reflected radar signals are received, the pulse matched filter
will respond uniquely for each target returning energy. When this product
vector is converted back to the time domain, each target will produce a
narrow pulse whose delay and amplitude correspond to target distance
and size, respectively.

Since the FFT converts time domain signals to frequency domain
signals, and the inverse FFT (IFFT) performs the opposite conversion,

Figure 1. Pulse compression radar.

RF Design www.rfdesign.com 17

these two algorithms are key blocks in the pulse compression system.
Figure 2 shows a complete digital pulse compression block with

the FFT at the input to process radar receiver signals. In the center,
the frequency domain image of the transmitter modulation pattern
is stored as the reference pulse spectrum. Its complex conjugate is
multiplied by the frequency domain signal from the FFT to accomplish the
correlation function. The IFFT stage at the right produces the final time
domain pulse compressed output signal.

FPGA-based pulse compression radar
The FFT algorithm is usually the most critical operation in pulse

compression and, therefore, FFT benchmarks are consistently used to
compare performance among DSP chips.

Since FFTs involve a tremendous number of multiplications,
the appearance of dedicated hardware multipliers was the single
most important factor in DSPs to set them apart from conventional
microprocessors. With the advent of dedicated hardware multipli-
ers in FPGAs, these devices were soon challenging general-purpose
programmable DSPs for signal processing tasks in many DSP
applications, especially radar.

Instead of the one to four multiplier engines found in most DSPs,

FPGAs are now sporting dozens and even
hundreds of dedicated hardware multipliers.
Compared with the iterative multiplications
performed by program loops in DSPs, multipli-
cations in FPGAs can be executed in parallel to
deliver unprecedented FFT benchmarks.

Nevertheless, critical design trade-offs
and obstacles must be evaluated and over-
come to ensure a successful FPGA imple-
mentation for radar pulse compression.
This article discusses these issues as they
were identified and addressed during the
development cycle of a general-purposed IP
FPGA core for pulse compression.

Design trade-offs and issues
Two fundamental properties of any DSP

algorithm are speed and accuracy. A third
factor for FPGA designs is the number of
resources (gates, slices, multipliers, etc.)
consumed. Unlike DSPs with fixed hardware
resources, FPGAs are offered as a family of
devices, whose members contain hardware
resources ranging in quantity by more than
an order of magnitude. Since algorithm speed
and accuracy can be traded off for the num-
ber of hardware resources, many different
architectural choices may be required to maxi-
mize performance for the size, cost and power
constraints of specific FPGA family members.
For this reason, a general-purpose IP core
should be scalable for size vs. performance.
 Operating modes. In order to handle di-

verse classes of targets and a variety of mission
objectives, pulse compression systems often
need multiple operational modes to support
FFTs of different lengths, a range of pulse
repetition rates, and several levels of dynamic
range. While FPGAs can be reprogrammed
by downloading a new configuration code for
each mode, it’s better to include support for
all required modes within a given FPGA
design. In this way, the operator can switch

quickly and easily between modes by passing
control parameters to FPGA registers.
 Dynamic range. The frequency chirp is one of the most commonly

used modulation patterns for radar, and its energy is inherently spread
across a frequency band. Since the first stage of pulse compression is an
FFT, this chirp signal results in energy distributed over many FFT bins,
with relatively low energy levels in any single bin. At the same time,
radar systems must be able to accommodate strong, fixed frequency
signals from extraneous interfering sources without overloading.

This imposes tough dynamic range requirements at the output
of the FFT stage. With enough headroom to handle the strong
signals, the smaller distributed frequency components of the chirp still
need enough bits of resolution to provide accurate correlation in
the following stages.

True floating point processing solves this dynamic range problem
quite well. However, FPGAs are quite inefficient in implementing
floating point operations, since the native hardware is fixed point.
In the Xilinx Virtex-II family, for example, the dedicated hardware
multipliers in FPGAs are fixed point engines, accepting two18-bit
inputs and producing a 36-bit product. Although a 36-bit result at
the FFT output may have enough dynamic range, with this type of
multiplier the subsequent conjugate multiplication stage (see Figure 2)

Figure 2. Basic pulse compression core.

Figure 3. Maximum performance pulse compression Core 440.

Figure 4. Minimum resource pulse compression Core 440.

18 www.rfdesign.com October 2005

can accept only the 18 most significant of these
36 bits. This can result in loss of critical signal
energy of the smaller chirp signal components,
especially for wide chirp bandwidths.

Combining three or more 18 x 18 multi-
pliers with some additional logic can create
higher-precision fixed-point multipliers,
but this quickly consumes multipliers and
also adds pipeline delays to slow speed
performance.
 Speed. Pulse compression radar systems

effort involves minimizing digital signal paths
so that the system clock can be increased to
reduce processing time.

Factors that affect propagation delays are
logic complexity (several levels of gate logic),
extended precision arithmetic (as discussed
above with the higher precision multipliers),
and the basic speed of the silicon. Complex
logic and extended precision arithmetic blocks
can sometimes be partitioned into multiple
clocked stages in order to boost the clock
speed, but this added latency might impact a
critical speed path. All FPGA vendors offer
devices in a range of silicon speed grades, so
that buying a faster (more expensive) device,
may enable a particular design to operate at
the required clock rate.

Overcoming obstacles
In designing a radar pulse compression

IP core flexible enough for diverse systems,
it soon became clear that the conflicting
demands for size, dynamic range and speed
would require some clever signal-processing
techniques and multiple architectures. Some of
the strategies for meeting these objectives for
Pentek’s GateFlow 4954-440 pulse compres-
sion IP core are described. The core is targeted
for the Virtex-II, Virtex-II Pro and Spartan
device families from Xilinx.

To tackle the dynamic range issue, a major
design decision was made to use block floating
point arithmetic throughout to achieve some
of the accuracy benefits of floating-point math
while preserving the reduced size benefits of
fixed-point hardware. This technique involves
adaptive scaling of all of the points in a vector
by the same amount, so that the largest point
just fits in the bit field without overflowing.

In practice, all of the output points of a
particular signal-processing stage are stored
in a RAM. The entire output block (or vector)
is then scanned to determine the largest point.
Then all of the points in the block are left-
shifted by the same number of bits required
to left justify the largest point. This number
of shifts is then tagged with the block as its
exponent and passed on to the next stage.

Three block floating point conversion
stages are incorporated in the Core 440 design
as shown in Figure 3. With this arrangement,
block floating point arithmetic maximizes the
dynamic range of a given word length and
adaptively scales for changing signal levels
automatically after each of the three stages.
The output pulse is delivered in block floating
point format to preserve accuracy.

To handle varying accuracy requirements
under this block floating point scheme, the
Core 440 is offered with three different
word lengths (mantissa): 16, 20 and 24
bits. The 16-bit version uses a single 18
x 18 multiplier stage while the 20-bit and
24-bit versions use the bulkier compound

must be capable of processing all reflections
from an outgoing pulse in a given stage
before signals arrive from the next pulse.
Certain modes of operation require a fast
pulse repetition rate, which drives the
processing speed requirements of the pulse
compression engine.

FPGAs operate as synchronous state
machines using a system clock to propagate
data into registers between logic stages.
A significant portion of the FPGA design

RF Design www.rfdesign.com 19

multiplier stages described earlier.
The reference pulse spectrum is stored in a

RAM array that can be loaded directly through
a data port. Instead of loading the spectrum
of the reference pulse, an alternate path is
provided so that the time domain waveform
of the reference pulse can be processed by the
input FFT and then sent into the reference
pulse spectrum RAM. For fi xed modulation
patterns for transmitted pulses, the RAM
needs to be loaded only once, but for adaptive
systems, a new reference pulse spectrum can
be loaded for each processing frame.

Another design decision centered on how
to support different FFT (and IFFT) sizes or
block lengths. Parameter entry of the FFT
size is desirable to support multiple modes
with a single FPGA design, and 16 k points
was chosen as a reasonable maximum length.
However, making provisions to support a 16 k
point FFT consumes a great deal of the RAM
resources, forcing customers with smaller
FFT requirements to use a larger and more
expensive FPGA than necessary. For this
reason, four different maximum length FFT
designs were created for the Core 440: 2 k,
4 k, 8 k and 16 k points. In each case, the size
of the FFT is programmable from 64 points
up to the maximum size in binary steps, simply
by entering a parameter in a FPGA register.

One additional architectural option was
deemed important. Since the FFT and the
IFFT blocks involve nearly identical process-
ing tasks, it is possible to use the same FPGA
hardware to perform these two operations
sequentially. If the pulse repetition rate is low
enough, this can result in a dramatic reduction
in the number of FPGA resources.

Accordingly, the Core 440 offers two differ-
ent architectures. The maximum performance
architecture version is shown in Figure 3,
with two dedicated engines, one for the FFT
and another for the IFFT. The minimum
resource architecture, shown in Figure 4, in-
cludes switches at the input and output of the

ABOUT THE AUTHOR

Rodger H. Hosking is vice president of
Pentek and was one of the co-founders of
the company in 1986. With more than 26
years experience in the electronics indus-
try, he is responsible for matching new
technology to advanced signal-processing
applications and for the defi nition of new
products. He designed the fi rst commer-
cial direct digital frequency synthesizer,
and holds patents in frequency synthesis
and FFT spectrum analysis techniques.
Hosking has a BS degree in Physics
from Allegheny College and BS and MS
degrees in Electrical Engineering from
Columbia University.

FFT/IFFT block to engage the signal fl ow
paths at the appropriate times. The resulting
output of both architectures is identical, so
users can trade off speed for resource utili-
zation, perhaps allowing the core to fi t in a
much smaller device or leaving room for
additional functions.

Summary
In all, the Core 440 offers three different bit

widths for the processing engines, four differ-

ent maximum length FFTs, and two different
speed/resource architectures for a total of 24
different confi gurations. This fl exibility comes
in handy since requirements may shift during
the design cycle.

Although FPGA development tools are
improving rapidly, nothing replaces the intu-
ition and guidance of an experienced design
engineer who uses hardware and software
skills to balance performance needs against the
physical realities of confi gurable logic.

