
w Datasheet: COM Express Boards w Battery Management ICs | Sound Localization |

Tips for Choosing Embedded Products | Gesture-Controlled Speakers |

System Controller Manufacturing Test (Part 1) | Measuring Air Quality

w Design Against FI Attacks | Semi Basics (Part 5) | Smart LEDs (Part 1) |

Relaxation Generator Redesigned w The Future of IoT as Safety Resource

SYSTEM SOLUTIONS FOR DRONES
JANUARY 2020

ISSUE 354CIRCU
IT CELLAR | ISSU

E 354 | JANUARY 2020
circuitcellar.com

circuitcellar.com

SYSTEM SOLUTIONS SPEED
DRONE DESIGNS

Inspiring the Evolution of Embedded Design

M a ke y o u r c o d e e v e n f a s t e r, s m a l l e r, a n d s m a r t e r

w h i l e e n s u r i n g ro b u s t n e s s a n d h i g h q u a l i t y.

A s t h e o n ly c o m m e rc i a l t o o l s v e n d o r, I A R S y s t e m s i s a b l e t o p ro v i d e

s t a b l e a n d f u t u re - p ro o f t e c h n o l o g y a s w e l l a s g l o b a l t e c h n i c a l s u p p o r t .

We a re s p e c i a l i s t s o n e m b e d d e d d e v e l o p m e n t a n d h e l p c u s t o m e r s w h e n

t h e y n e e d i t t h e m o s t , e n a b l i n g t h e m t o m a ke t h e p ro d u c t s o f t o d a y a n d

t h e i n n o v a t i o n s o f t o m o r ro w.

We t a ke R I S C - V t o t h e n ex t l e v e l .

S i g n u p n o w f o r y o u r f re e e v a l u a t i o n l i c e n s e !

A re y o u re a d y
f o r t h e n e x t
l e v e l ?

www.iar.com

f o r R I S C - V

https://fs8.formsite.com/CircuitCellar/IAR/index.html

The Embedded Experts

segger.com

Worldwide: sales@segger.com
 +49 2173 99312 0

U.S. East Coast: us-east@segger.com
 +1 978 874 0299

U.S. West Coast: us-west@segger.com
 +1 408 767 4068

n Real-time compression
n Small footprint
n No static RAM required
n Compression of data streams
n High performance
n High compression ratio
n On-target compression & decompression

emCompress-ToGo
Compress Data in Real-time on any Embedded System!

Data Loggers Internet of Things Space / Avionics

Networking Medical Devices Consumer Electronics

One Professional Compression Solution for All Applications

mailto:sales@segger.com
mailto:us-east@segger.com
mailto:us-west@segger.com
www.segger.com

CIRCUIT CELLAR • JANUARY 2020 #3542

OUR NETWORK

SUPPORTING COMPANIES

NOT A SUPPORTING COMPANY YET?
Contact Hugh Heinsohn

(hugh@circuitcellar.com, Phone: 757-525-3677, Fax: 888-980-1303)
to reserve space in the next issue of Circuit Cellar.

Accutrace, Inc.	 C3

All Electronics Corp.	 77

CCS, Inc.	 77

Earth Computer Technologies, Inc.	 23

Embedded World 2020	 19

IAR Sytems	 C2

Revenue Control Systems	 77

SEGGER Microcontroller Systems	 1

Siborg Systems, Inc.	 31

SlingShot Assembly	 67

Technologic Systems, Inc.	 C4, 77

University of Cincinnati	 11

Issue 354 January 2020 | ISSN 1528-0608

CIRCUIT CELLAR® (ISSN 1528-0608) is published monthly by:

KCK Media Corp.
PO Box 417, Chase City, VA 23924

Periodical rates paid at Chase City, VA, and additional offices.
One-year (12 issues) subscription rate US and possessions

$50, Canada $65, Foreign/ ROW $75. All subscription orders
payable in US funds only via Visa, MasterCard, international

postal money order, or check drawn on US bank.

SUBSCRIPTION MANAGEMENT

Online Account Management: circuitcellar.com/account
Renew | Change Address/E-mail | Check Status

CUSTOMER SERVICE

E-mail: customerservice@circuitcellar.com

Phone: 434.533.0246

Mail: Circuit Cellar, PO Box 417, Chase City, VA 23924

Postmaster: Send address changes to
Circuit Cellar, PO Box 417, Chase City, VA 23924

NEW SUBSCRIPTIONS

circuitcellar.com/subscription

ADVERTISING

Contact: Hugh Heinsohn

Phone: 757-525-3677

Fax: 888-980-1303

E-mail: hheinsohn@circuitcellar.com
Advertising rates and terms available on request.

NEW PRODUCTS

E-mail: editor@circuitcellar.com

HEAD OFFICE

KCK Media Corp.
PO Box 417

Chase City, VA 23924
Phone: 434-533-0246

COPYRIGHT NOTICE

Entire contents copyright © 2019 by KCK Media Corp.
All rights reserved. Circuit Cellar is a registered trademark

of KCK Media Corp. Reproduction of this publication in
whole or in part without written consent from

KCK Media Corp. is prohibited.

DISCLAIMER

KCK Media Corp. makes no warranties and assumes no
responsibility or liability of any kind for errors in these

programs or schematics or for the consequences of any such
errors printed in Circuit Cellar®. Furthermore, because of

possible variation in the quality and condition of materials and
workmanship of reader-assembled projects, KCK Media Corp.
disclaims any responsibility for the safe and proper function

of reader-assembled projects based upon or from plans,
descriptions, or information published in Circuit Cellar®.

The information provided in Circuit Cellar® by KCK Media
Corp. is for educational purposes. KCK Media Corp. makes

no claims or warrants that readers have a right to build
things based upon these ideas under patent or other

relevant intellectual property law in their jurisdiction, or
that readers have a right to construct or operate any of

the devices described herein under the relevant patent or
other intellectual property law of the reader’s jurisdiction.
The reader assumes any risk of infringement liability for

constructing or operating such devices.

© KCK Media Corp. 2019 Printed in the United States

THE TEAM
PRESIDENT
KC Prescott

CONTROLLER
Chuck Fellows

FOUNDER
Steve Ciarcia

COLUMNISTS
Jeff Bachiochi (From the Bench), Bob Japenga (Embedded in Thin Slices),
Robert Lacoste (The Darker Side), Brian Millier (Picking Up Mixed Signals),
George Novacek (The Consummate Engineer), and Colin O’Flynn
(Embedded Systems Essentials)

EDITOR-IN-CHIEF
Jeff Child

SENIOR ASSOCIATE EDITOR
Shannon Becker

TECHNICAL COPY EDITOR
Carol Bower

GRAPHICS
Grace Chen
Heather Rennae

ADVERTISING COORDINATOR
Nathaniel Black

ADVERTISING SALES REP.
Hugh Heinsohn

PROJECT EDITORS
Chris Coulston
Ken Davidson
David Tweed

mailto:hugh@circuitcellar.com
mailto:customerservice@circuitcellar.com
mailto:hheinsohn@circuitcellar.com
mailto:editor@circuitcellar.com
www.circuitcellar.com
www.linuxgizmos.com
www.audioxpress.com
www.voicecoilmagazine.com
www.loudspeakerindustrysourcebook.com
www.circuitcellar.com/subscription

circuitcellar.com 3

INPUTVoltage

Jeff Child

W hile I was an engineering student
in college—back when dinosaurs
roamed the Earth—I didn’t have a
lot of free elective slots. Because

most of you Circuit Cellar readers are engineers, you
can probably relate. But I did manage to fit in an
elective course about the philosophy of technology.
Whether it was the engineer in me or the nerd in me,
I’ve always had an interest in “looking under the hood”
or “behind the scenes” at the underlying meaning of
things, and of words in particular. One thing that stuck
with me from that course was the notion that the word
technology when you break it down means “the science
of technique.” For me that phrase has a nice ring to it.

Particularly in the past decade or so—as technology
has become a part of everyday consumer life—the
shortcut term “tech” has emerged as a cool replacement
for “technology.” I’ve always bristled at that, especially
as it became clear that the word “tech” tends to be used
more frequently by those that don’t have any clue about
how electronic circuits and computing systems work.
And by leaving off the “-ology” they are leaving off the
“science of” part, which, to me, is the important bit.

The result of all this is that I’ve tended to be
stubborn about not using the shortcut term “tech” in
either writing or in conversation. That’s easier said
then done when trying to keep headlines short, and I’ve
softened my stance about it in recent years. In an era
when boosting website SEO requires a certain amount
of conciseness, one must adapt.

Now that I’ve gotten that off my chest, I’ll turn a
technology (wink) that is definitely well positioned to be
a key “under the hood” winner: RISC-V. As a free and
open instruction set architecture, RISC-V has shaken
things up in the processor realm by offering an ISA
that everyone can use without paying a license fee.
The RISC-V specification enables custom instruction
extensions to facilitate the design of Domain-Specific
Architecture/Acceleration (DSA). These are important
for applications such as Artificial Intelligence/Machine
Learning, AR/VR, ADAS and next generation storage
and networking.

The timing of this magazine’s production is such
that I’m not able to report on the 2019 RISC-V Summit
that took place in early December. Judging by progress
made in the RISC-V ecosystem throughout 2019, I’m
sure there were many interesting developments.
Instead, I’ll talk about the market trends in RISC-V.
In November, Semico Research released a new report
“RISC-V Market Analysis: The New Kid on the Block” that
estimates that the market will consume a total of 62.4
billion RISC-V CPU cores by 2025, with the industrial
sector forecasted to be the largest segment with 16.7
billion cores. Forecasting the compound annual growth
rate (CAGR) for RISC-V CPU cores, Semico estimates
that segments including the computer, consumer,
communication, transportation and industrial markets
will see a 146.2% percent CAGR on average between
2018 and 2025.

In its forecast of the CAGR for RISC-V CPU cores
between 2018 and 2025, Semico estimates that the
communication sector will see the largest CAGR
due to the deployment of 5G and the multitude of
products and applications that will be enabled with
the adoption of 5G technology. Transportation is
estimated to have the second-fastest CAGR due to the
automotive industry’s growing focus on electrification
and the increased adoption of CPU-based systems for
safety, in-cabin experiences, driver assistance and
wireless communications. Semico not only found that
organizations are designing RISC-V solutions across a
variety of performance and volume applications, but
also that they’re designing anywhere from one or two
to more than 1,000 cores in SoCs.

RISC-V is compelling technology for engineers to
design into products—products that end customers are
free to call “tech” if they so choose.

The Science of Technique

CIRCUIT CELLAR • JANUARY 2020 #3544

@editor_cc
@circuitcellar circuitcellar

COLUMNS

DATASHEET	46	 COM Express Boards
Compact Performance

By Jeff Child

50	 Embedded System Essentials
Building Against Fault
Injection Attacks
Cautious Coding

By Colin O’Flynn

	54	 Picking Up Mixed Signals
Relaxation Generator: Reloaded
Internet Era Upgrade

By Brian Millier

	64	 The Consummate Engineer
Semiconductor Fundamentals
(Part 5) More on FETs

By George Novacek

	68	 From the Bench
Shedding Light on Smart LED
Design (Part 1)
Programming and Pixels

By Jeff Bachiochi

TECH THE FUTURE

	79	 The Future of IoT as
Safety Resource
Safer Living Through AI and IoT

By Jen Bernier-Santarini

76 : PRODUCT NEWS	
78 : TEST YOUR EQ

PG. 54

PG. 68

PG. 79

circuitcellar.com 5

	6	 Motion/Gesture-Controlled
Speakers
PIC32 Playback

By Jidenna Nwosu, Benjamin Francis and Ayomi Sanni

12	 Device Measures
Indoor Air Quality
Bluetooth-Based Design

By Carlo Tauraso

20	 Sound Localization
Using a PIC32 MCU

By JinJie Chen and Alvin Pan

27	 Choosing Real-Time
Embedded System Products
10 Key Tips

By Rodger Hosking

32	 System Controller
Manufacturing Test (Part 1)
The Hardware

By Nishant Mittal and Manoj Khandelwal

SPECIAL FEATURE	36	 System Solutions Accelerate
Drone Development
Fast Track to Flight

By Jeff Child	
TECHNOLOGY SPOTLIGHT	42	 Analog ICs Boast Battery
Management Innovations
Perfecting Power

By Jeff Child

FEATURES

PG. 6

PG. 12

PG. 36

CIRCUIT CELLAR • JANUARY 2020 #3546
FE

AT
U

RE
S

O ur Motion-Controlled Speaker
project is an application that
uses non-contact sensors to
control the audio output from a

speaker, based on motion patterns that the
sensors detect. This project idea originated
when we began discussing innovations that
would be of interest to us. We immediately
took a liking to this idea, because we could
see it being implemented into products in the
near future. We all have personal interests in
music and in working on something that could
be built into different products, such as smart
watches or other similar smart products with
streaming capabilities. Our objective was to
build a prototype of this type of technology,
using Sharp GP2Y0A21YK0F IR sensors from
Pololu, the PIC32 microcontroller (MCU) and
another main component that would be based
on whether we decided to stream the music
or to play downloaded music from a device
with memory.

After much research and trying out various
methods, we decided to use a Raspberry Pi 3B
embedded computer board as a device for the

playback of songs. The final product, using
the IR sensors, PIC32 and Raspberry Pi 3, was
a working prototype that was able to pause
and play songs, turn the volume up and down
and change to the previous and next songs—
solely based on hand motions. The schematic
of the project is shown in Figure 1.

HIGH-LEVEL DESIGN
A significant logical part of our project was

the communication between the Raspberry Pi
and the PIC32 MCU, through the utilization of
the UART hardware on each device. The serial
port between the two was set up at a baud
rate of 115200 bps—the fastest speed that the
serial port can transfer data between the two
computers. There was an optimization trade-
off that we had to consider. We knew that
using this baud rate allowed us to send the
greatest amount of data at a fast enough rate,
but with a higher chance of data corruption or
data loss. Fortunately, we didn’t observe any
of these errors, so we chose to continue using
the highest speed possible.

The baud rate is the speed at which bits

Controlling electronic devices with hand gestures may seem like the stuff of science fiction.
But the technology is easily available today, even for MCU-level embedded systems. Learn
how these three Cornell students built a motion/gesture-controlled speaker using sensors,
a computer and a Microchip PIC32 MCU. With hand gestures, the system lets you control
the volume, play/pause and change songs by skipping forward and backward.

PIC32 Playback

By Jidenna Nwosu, Benjamin Francis and Ayomi Sanni

Motion/Gesture-Controlled
Speakers

circuitcellar.com 7
FEATU

RES

can be transferred, so bytes of data can be
sent at a maximum rate of 11,500Hz. With that
in mind, we had to downsample most tracks
of music, which originally were sampled
at a rate of 44,100Hz. We used Mathworks
MATLAB code provided by a Cornell professor
to downsample the tracks to a quarter of
that frequency, or 11,025Hz, which was the
greatest rate we could obtain that was below
the maximum. This decreased the quality of
the relayed music, but it was still clear and
enjoyable.

The structure of our project is as follows:
The first part is resetting the PIC and running
our code on the Raspberry Pi 3. Once the PIC
has finished resetting, it sends a ready signal
to the Pi. The Pi receives this signal and then
begins to process and send the music data
that has been prewritten onto it, byte by
byte. These bytes are received by the PIC and
stored into two buffers, where one receives

the data, and when full, starts playing.
While this buffer is playing, the other buffer
continues receiving data where the previous
left off. When one of the buffers is full, it
sends a signal that it is ready to receive more
data. Figure 2 is a logical structure diagram
illustrating this process.

We made sure to follow the typical multi-
processor communication protocol that was
relevant for our purposes. Because we were
using the UART hardware present on the PIC
and the Pi, we followed the RS-232 standard.
Unlike other motion-activated audio emitters,
our project is more focused around using
specific motions to control a sound or music
playback device, with different patterns of
motion producing different results.

HARDWARE DESIGN
The PIC32 does not have enough memory

(only 128KB of flash memory) to store full

FIGURE 1
Schematic for our Motion Sensor Speaker system

CIRCUIT CELLAR • JANUARY 2020 #3548
FE

AT
U

RE
S

songs. So, we used the Raspberry Pi 3
to store music and stream to the PIC32,
because its memory is limited only by the
size of its memory card, and it is also a high-
performance device for its price. The serial
communication between the PIC and the
Raspberry Pi required connecting the UART
transmit pin on the PIC to the UART receive pin
on the Raspberry Pi and vice versa. We also
ensured that they share a common ground.

This sensor array acts as the interface
between a user and the music streaming
system that we designed. We screwed the
sensors to a small rectangular wooden board
to keep them stable and make it easy to
control the program using hand gestures.
We assembled the sensors in a diamond
formation (Figure 3). This formation makes it
easy to control the flow of the music by simply
holding a hand over different combinations

of sensors to perform different actions. For
example, holding a hand over the bottom and
top sensor pauses or resumes playing the
music. The diamond formation also makes
it possible to add a swiping feature to our
system in the future, such that swiping across
the sensors from left to right will switch the
music to the next track.

PROGRAM DESIGN
The main software component of our

motion-sensor speaker system consists of two
threads: an interrupt service routine (ISR) on
the PIC and a Python program on the Raspberry
Pi. The program continuously executes until it
is terminated. For the entire system to run
successfully, the threads, ISR and Raspberry
Pi program must be synchronized with each
other and communicate efficiently. The sensor
thread reads the analog input from the analog
IR distance sensors and controls the state of
the system based on these data.

The serial thread’s main function is to
spawn another thread that reads and sends
data through the UART module based on the
state of the system. The ISR processes data
received through the UART and outputs the
processed data through the digital-to-analog
converter (DAC). The serial communication
program that runs on the Raspberry Pi loads
the music header files and sends these data
through the UART. This program also receives
data through the UART from the PIC that
affect the state of the program.

For testing, we used a MATLAB program
to make WAV files. This program converts
downloaded WAV files to C language header
files that can be outputted through the DAC
once transmitted to the PIC. This program first
reads a WAV audio file specified at a certain
location on the computer. The WAV files have
a sampling frequency of 44.1kHz, which is too
fast for our system to play, so the program
down-samples the audio by a factor of four.

This allows the audio to be played at a
sampling frequency of about 11kHz. The
samples then have to be scaled so they can
be played by the 12-bit DAC. These converted
audio samples are then stored to the header
file, with enters between samples. After being
converted to a header file, the music is ready
to be loaded into our program to be played.

PIC32 SECTION
The first PIC32 thread begins by reading

the first four channels of analog-to-digital
converter (ADC). The ADC converts the analog
output from the four IR distance sensors to a
digital format that is then stored in variables
(adc_9, adc_10, adc_11, adc_12). We set
a minimum threshold of 400 ADC units for a
sensor reading that counts as a valid detection.

FIGURE 2
Logical structure diagram

Logical structure

PIC Pi

Receive signal

Send data

Output signal

Buffer A
• Download sent data
• Play data via DAC

Buffer B
• Download sent data
• Play data via DAC

Swap between
buffers so one is

always downloading
data and the other

is outputting it.

ABOUT THE AUTHORS
Jidenna Nwosu is a Cornell University graduate who majored in Electrical
and Computer Engineering and Information Science Engineering. Jidenna is
looking to work as an embedded software/hardware engineer.

Benjamin Francis is a Cornell University graduate (May 2019) who majored
in Electrical and Computer Engineering. He is currently work as a Systems
Engineer at L3Harris Technologies.

Ayomi Sanni is a Cornell University graduate (May 2019) who majored in
Electrical and Computer Engineering. Ayomi is currently looking to work as
a software engineer.

circuitcellar.com 9
FEATU

RES

We found this to be an ideal threshold through
trial and error. If the threshold is too small,
then you have to hold your hand too close to
the sensor for motion to be detected. If it’s
too large, then objects that are far away may
be unintentionally detected.

We implemented a counter for each sensor
to keep track of how long a hand is being
detected by a sensor. The corresponding
counter is incremented with every consecutive
iteration of this thread during which a hand
is still being detected by the same sensor.
If a sensor no longer detects a hand, then
its corresponding counter is reset to zero.
These counters are a form of debouncing
the sensors. For example, if someone quickly
waves a hand over a sensor by accident, it will
not be acknowledged by our program.

These counters act as the control signal
for the state of the music playback. They
also signal actions that should be done to the
playback. The two states that our system can
be in are “play” and “pause.” When someone
holds a hand over the bottom and top sensors,
one state is switched to the other state. In
other words, the state switches from play
to pause or pause to play. We found that if
the top counter is equal to 3 and the bottom
counter is greater than 1, it is a solid enough
sign that someone is attempting either to
resume playing music or pause the music. We
discovered that when we set the condition for
both counters to be equal to the same value,
the switch of states was inconsistent.

The volume of the music can be turned
up or down when a hand is held over the top
or bottom sensor, respectively. To adjust the
volume, the counter corresponding to the
sensor must be equal to 2, and the sensor
opposite it must be less than 1. We added the
“less than 1” condition to differentiate this
action from changing the play/pause state.
A variable for volume is then decremented/
incremented based on which action is signaled.

We also implemented an action state for
switching to a new song. When a hand is
held over the right or left sensor, the next/
previous track should play. This thread sets
the action variable to next or previous track
if either of these counters is equal to 2. The
desire to switch tracks is later signaled to the
Raspberry Pi by the serial thread.

SECOND THREAD
The second PIC thread spawns another

thread that communicates with the Raspberry
Pi by sending and receiving data through the
UART’s Tx and Rx pins. Each byte of data is
received by the PIC and stored into one of the
buffers, while the other one is being read in
the ISR. We use two buffers to ensure constant
playback, since one buffer constantly receives

the data while the other relays that data to
the DAC. This is more efficient and necessary
so that data can be received and written at
the same time that data are being played. It
enables a seamless transition between bytes of
music data that are transferred. The spawned
thread is not killed until the current buffer
being written to has been filled with the latest
8,000 samples of the transmitted music data.

In the spawned thread, we continuously
check the state of our system and send a signal
to the Pi based on this state. When the state
of our system is in “play,” we continuously
receive data from the Pi by first sending it
the ready signal. And when the state is in
“pause,” we stop sending the ready signal,
which stops the transfer of data—but we
make sure to save the spot that we stopped at
on both ends. When switching to the next or
previous track, we output the corresponding
signal that basically informs the Pi to begin
outputting data from the next or previous
set of data that was downloaded. Each set is
given a corresponding number on the Pi side.

The next or previous signal is sent only
once, then we return to continuously sending
the ready signal, so that the PIC, in turn,
receives and plays the song immediately.
This makes the entire song-switching process
occur in real time. It is important to clear
either buffer when necessary, such as when
switching songs, so that playback of different
song data does not overlap—an issue that we
encountered briefly.

INTERRUPT SERVICE ROUTINE
The ISR formats the samples in the serial

FIGURE 3
Sensor board with diamond formation of sensors

CIRCUIT CELLAR • JANUARY 2020 #35410
FE

AT
U

RE
S

buffers for the DAC, before transmitting them
through the second SPI channel and outputting
through the DAC. This ISR is triggered by a
timer interrupt at a rate determined by the
sampling frequency of the music playback.
We set the timer to trigger an interrupt every
3,628 cycles (1/11,025Hz) (PIC32 clock freq./
sampling frequency). Each time the ISR is
executed, a new sample is sent through the
SPI channel to the DAC, only if the state of
the system is in “play.” Before the sample is
transmitted through the SPI port, the sample
is manipulated based on the state of the
system and requirements for the DAC. The
sample is first converted to an integer, before
being left-shifted by a number determined by
the volume variable.

A greater left shift creates a larger value,
which consequently makes the sample louder.
The most that each sample can be left-shifted
is four. That’s because the samples are 8-bit
values, and the DAC only supports 12 bits.
The samples cannot be left-shifted by less
than zero, because that would result in the
loss of some of the sample’s data. The shifted
sample is then added to 2,048 to increase
its amplitude, to maximize the potential
of the DAC. Before being written to the SPI
channel, the sample is OR-ed with the DAC A
configuration bits. This step tells the SPI to
send the sample to DAC A.

The buffer that is not being written to at
the time is read and sent through SPI to the
DAC. Once this buffer’s samples have all been
transmitted to the DAC, the ISR switches the
buffer state. This indicates that this buffer
should now be written to, and the other buffer
should be read from. This switching of buffers
allows for continuous playing of music,
because samples from the Pi are always being
received and stored at the same time that the
PIC is outputting these samples.

Pi SECTION
This program’s main purpose is to

transmit music samples to the PIC using serial
communication. It reads and writes serial data
through the UART module on the Raspberry
Pi. The program begins by initializing a serial

writer and reader, to send and read signals
through the UART. We set the baud rate for
this communication to 115,200bps—fast
enough to transmit 11.5 thousand samples
per second). We then read the header files into
variables, which we convert to integer format.
One final conversion is then performed on the
data: conversion to byte arrays format. At this
point, the music samples can be transmitted
through the Raspberry Pi’s UART transmit pin.

Once the initial procedures performed on
the data are completed, the program enters an
infinite loop and begins reading the serial input.
If an “A” is received, then a flag is set to indicate
that the PIC is waiting to receive data. Once this
flag has been set, the next 8,000 samples of
the current song being played are transmitted
through the Pi’s transmit pin to the PIC.

If the song is finished being transmitted,
then on the next iteration, the next song
starts being transmitted to the PIC. If an
“N” (or “P”) is received instead, the next (or
previous) song read by the program starts
to be transmitted. Our current Python serial
communication program transmits only three
songs, but this program can be expanded
to transmit many more songs simply by
converting and loading more WAV files onto
the Raspberry Pi’s memory. It will also require
duplicating much of the code.

RESULT OF DESIGN
We were pleased with what were able to

achieve with our project. It covered all the
bases of what we had initially aimed to do.
When we loaded three songs through the Pi,
we were able to pause and play a song, skip
forward to the next song, skip back to the
previous song and control the volume. The Pi
read properly from the serial interface, and
did not start transmitting the music until it
received permission from the PIC. The PIC
read the inputs from the distance sensors,
and used that information either to control
the volume level, or tell the Raspberry Pi to
stop transmitting or change the song it was
sending. All of this was performed quickly
and smoothly, and—most importantly—in real
time. We were able to exhibit all of this during
our demo. To see a YouTube video of our
project demo, scan the QR code in Figure 4.
This video is also posted on Circuit Cellar’s
article materials webpage.

The design also showcases all the things
we considered throughout the development of
the speaker. By positioning the sensors on a
board similar to a remote and in an efficient
manner, we ensured that each gesture will be
correctly interpreted. This design as a whole
is preferable and useful because all it takes is
a simple hand gesture over the apparatus to
control the user’s music.

FIGURE 4
QR code for YouTube video
demonstration of our project. The
video is also posted on Circuit Cellar’s
article materials webpage.

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials

RESOURCES
Digi-Key | www.digikey.com

Mathworks | www.mathworks.com

Microchip Technology | www.microchip.com

Pololu | www.pololu.com

http://www.circuitcellar.com/article-materials
http://www.digikey.com
http://www.mathworks.com
http://www.microchip.com
http://www.pololu.com

circuitcellar.com 11
FEATU

RES

A more advanced version of this
prototype could be useful in many situations.
The primary and most popular use would be
providing a fun, innovative and relatively
effortless method in which users can
interface with their devices. However, there
are also some serious applications for
this technology. For example, people with
impaired vision could benefit greatly from
this type of gesture technology. If the motion
sensing speaker were attached to the user’s
wrist—perhaps as part of a smart watch
application—the user could switch between
songs or perhaps pages of an audio book
without needing touchscreen buttons. The
user would simply wave a hand over the
screen in the desired direction to switch or
flip pages. Those with mental disabilities
could possibly benefit from this technology
as well, because they might find it easier
to use certain gestures and hand motions,
rather than the typical button inputs required
to interface with devices. Overall, we can
see many amusing and functional uses for
a more advanced version of this prototype.

CONCLUSIONS
On the whole, our final product worked

quite seamlessly and met, if not exceeded,
our expectations. We had to deviate from

some initial plans as we progressed with this
project. But, in the end, we fully achieved our
goal of having a quality speaker system that
could be motion-controlled by hand gestures.

There are a few supplements we could add
in the future to further bolster our system.
It would be desirable to develop a method of
streaming the audio WAV file directly on the
Raspberry Pi. This would preclude the lengthy
process of the MATLAB header conversion
for each song. Another improvement would
be refining the gesture-detection software,
so that users could perform more engaging
motions, such as swiping up to raise the
volume, and swiping down to lower it.

An additional interesting feature that we
talked about was installing a microphone
that could “listen to the room.” It would
adjust the volume of the music based on the
background noise present in the current
environment. However, this might not be
feasible or desirable in some situations. Our
final, most advantageous improvement
would be the ability to play music from a
streaming application, such as Spotify or
Apple music. This would make our system a
lot more useful and popular. All in all, these
improvements would be nice additions to our
system, but we are very happy with our
current final product.

LOOKING TO

Be a part of one of the
top Electrical Engineering
programs in country
and experience the
Bearcat Promise!

Fall registration is
open nowonline.uc.edu

ADVANCE
YOUR
CAREER?

www.online.uc.edu

CIRCUIT CELLAR • JANUARY 2020 #35412
FE

AT
U

RE
S

A ir pollution has become a
problem that cannot be
underestimated, due to its
implications in the increasingly

frequent catastrophic events of which we
are powerless spectators. In recent years,
governments have tried to limit not only
global emissions but also possible sources of
pollution in the buildings where we live.

Many researchers have shown a strong
correlation between exposure to pollutants in
indoor environments and some widespread
diseases, such as asthma, allergies, lung
infections, some forms of cancer and diseases
affecting the cardiovascular system. Terms
such as SBS (Sick Building Syndrome) and
THS (Toxic Home Syndrome) have been coined
to highlight and group all those symptoms
of health deterioration of occupants in
environments where there is polluted air. It
has been calculated that people spend about
90% of their time indoors, in places such
as schools, offices and apartments, so the
health impact of the air we breathe in these
environments is much greater than that
resulting from outdoor air pollution.

On the market we have seen, in recent
years, a rapid spread of air quality monitoring
systems, especially those integrated into
ventilation systems. Many of these are limited

to measuring the indoor air quality (IAQ) in a
single room and near the ventilation system.

Setting out to create an educational
application that involves Bluetooth LE (BLE)
technology, I thought of combining business
with pleasure by developing a network of IAQ
monitoring tags that allows evaluating the
healthiness of multiple environments and one
that is very simple to install—taking advantage
of the Android smartphone features. This is how
IAQnet was born—a small system consisting of
one or more monitoring tags based on Bluetooth
technology and an Android app communicating
with them, displaying the values of some
sources of pollution present in our house.

INDOOR AIR QUALITY AND
SENSORS

Indoor air quality can be influenced by
various kinds of contaminants, and currently
there is no standard measurement method.
One of the most promising methodologies is
monitoring the levels of VOC (volatile organic
compounds) and carbon dioxide (CO2). VOCs
are compounding whose toxicity depends on
their density in the air we breathe.

The VOCs include: benzene, which is
generated in the production of plastic
materials; chlorofluorocarbons (CFCs), which
are present in cleaning products and coolants;

Unhealthy air in indoor environments has been linked to diseases such as asthma, allergies,
lung infections and more. That’s driven the demand for sophisticated indoor air quality
(IAQ) measurement systems, but many have serious limitations. In this project article,
Carlo shares the details of his design of IAQnet project. The Bluetooth-based system
creates a network of IAQ monitoring tags that enables users to evaluate the healthiness
of multiple environments.

Bluetooth-Based Design
By
Carlo Tauraso

Device Measures
Indoor Air Quality

circuitcellar.com 13
FEATU

RESmethylene chloride, which is present in
adhesives and spray paints; formaldehyde,
which is present in plastic laminates on wood;
acetone, which is found in many paints; and
numerous other chemicals.

For this project I used a low-cost breakout
board with a CCS811 sensor from AMS AG [1].
It’s an ultra-low-power digital sensor with an
I2C interface that integrates an MOx (Metal
Oxide) gas sensor, to detect a wide range of
VOCs and to predict TVOC (total volatile organic
compounds). It includes a microcontroller
(MCU) that uses an algorithm to process the
values measured by presenting a TVOC value
at the output, and then converts it into the
equivalent CO2 level. The TVOC output range
is from 0 to 1,187ppb.

Clearly this equivalent level of CO2 is
not a direct measure of the CO2 present in
the environment, but rather the result of

an equation application. Therefore, the
sensor provides TVOC concentrations and
an estimation of CO2 or “eCO2.” The eCO2
output range is from 400 to 8,192ppm.
TVOC measurement is more important than
CO2 in terms of health impact. However,
the equivalent CO2 makes it possible to add
the sensor output to ventilation standards
and implement it for ventilation systems,
thus reducing the energy consumption
compared to time-scheduled ventilation.
The equivalent CO2 allows the detected TVOC
value to be interpreted more clearly, through
the use of tables (Figure 1) that associate
the concentration of CO2 with the need for
ventilation. For example, to have a healthy
environment in a room, the concentration of
CO2 should not exceed 1,000ppm.

For more precision, it is possible to
compensate gas readings with variations in

FIGURE 2
The IAQnet tag schematic

FIGURE 1
Association of the CO2 concentration in
indoor air with the need for ventilation

350 ppm
Outdoor

air

1,000 ppm
Feeling of
stale air

4,000 ppm
Room with

poor
ventilation

5,000 ppm
Max

concentration
in the work

station

50,000 ppm
Man

expiratory
concentration

100,000 ppm
Candle

extinguishing

200,000 ppm
Deadly to

man

CIRCUIT CELLAR • JANUARY 2020 #35414
FE

AT
U

RE
S

temperature and humidity. I therefore added
another low-cost breakout board with an
HTU21D sensor from Measurement Specialties
[2]. It is a highly accurate temperature and
relative humidity sensor. It also uses an I2C
interface, so I share the same bus used for
the CCS811. Default resolution is set to 12 bits
relative humidity and 14-bit temperature
readings, and is more than sufficient for our
purposes. Measured data is transferred in
2-byte packages, MSB first. But the measured
values require a conversion carried out by
applying the formulas indicated on page 15 of
the HTU21D datasheet [3].

DESIGNING THE IAQnet TAG
As shown in the schematic (Figure 2),

the circuit consists of a core module based
on Nordic Semiconductors’ nRF51822 SoC
and two breakout boards—one for detecting
temperature/humidity, and one for detecting
the concentration of VOCs. The nRF51822 is a
multiprotocol SoC for ULP wireless applications
[4]. It incorporates an Arm Cortex M0 CPU,
256KB flash memory, 32KB RAM memory
and a powerful radio transceiver. The nRF51
series RF transceiver is interoperable with
BLE (Bluetooth low energy) and other 2.4GHz
protocol implementations such as ANT,
Gazelle and others. In this project I used BLE
to develop the Android app. This makes the
app for reading the data detected by the tag
simpler and more affordable, even for less
experienced readers. However, the system
also allows the implementation of an ad hoc
communications protocol that is also fully
air-compatible with the nRF24L series that I
used in a thermal monitoring system project
published a few years ago entitled “ Build a
Thermal Monitoring Network” (Circuit Cellar
288, July 2014).

For the prototype, I used another breakout
board from Waveshare [5], with the nrf51822
in the basic configuration (Figure 2). The
oscillator circuit consists of a crystal at 16MHz
with two capacitors C1 and C2. The capacitors
C9 and C11 have decoupling function on their
power source pins. Now, let’s look at the
antenna section. For space reasons I have used
the model with an integrated PCB antenna.
The circuit has an impedance network adapter
with capacitors and inductors (L1, L2, L3, C3,
C4, C5 and C6). Adapting the impedance is
critical to avoid losing power. Table 1 shows
the parts list.

Pins P0.00 and P0.01 are configured,
respectively, as data line (SDA) and clock line
(SCL) of the I2C communication bus between
the nrf51822 and the HTU21D/CCS811. R1
and R2 are pull-up resistors. Note that both
breakout boards contain two SMD pull-up
resistors. On the CS811 board they are 4.7kΩ

ABOUT THE AUTHOR
Carlo Tauraso (carlotauraso@gmail.com) studied computer engineering at
the University of Trieste in Italy and wrote his first assembler code for the
Sinclair Research ZX Spectrum. He is currently a senior software engineer,
who does firmware development on network devices and various types of
micro-interfaces for a variety of European companies. Several of Carlo’s
articles and programming courses about Microchip Technology PIC MCUs
(USB-PIC, CAN bus PIC, SD CARD, C18) have been published in Italy, France
and Spain. In his spare time, Carlo enjoys playing with radio scanners and
homemade metal detectors.

FIGURE 3
The tag assembly

Parts List
C1, C2 12pF capacitors
C3 2.2nF capacitor
C4 1pF capacitor
C5 3.9pF capacitor
C6 1.5pF capacitor
C7, C8, C11, C12 100nF capacitors
C9 1nF capacitor
C10 47nF capacitor
C13 1µF capacitor
R1, R2, R3 4.7kΩ resistors
X1 16MHz crystal
L1 4.7nH inductor
L2 27nH inductor
L3 3.3nH inductor
U1 nRF51822
U2 HTU21D
U3 CCS811

TABLE 1
Parts list for the IAQnet project

mailto:carlotauraso@gmail.com

circuitcellar.com 15
FEATU

RES

(472SMD), and on the HTU21D they are 10kΩ
(103SMD). To avoid connecting the two pairs
in parallel—reaching a total resistance that
is too low—there are pads on the board
that allow you to connect or disconnect the
integrated pull-up resistors. In this project, I
used only the 4.7kΩ resistors present on the
HTU21D board.

The CCS811 chip operates in polling mode.
A measurement is performed every second
(DRIVE_MODE = 001). The host software
cyclically reads data from the sensor,
performing a 4-byte data read to the register
named ALG_RESULT_DATA. Each pair of values
should be converted to a 16-bit type field
value. In this way it is possible to obtain the
eCO2 and TVOC values directly. The CCS811
supports compensation for relative humidity
and ambient temperature. So, before every
TVOC reading, it is possible to update ENV_
DATA registers with temperature and humidity
values from HTU21D.

In power-sensitive applications, the
WAKE pin is controlled by a GPIO pin. In my
project, I tie it to ground, so the chip never
enters sleep mode. The ADDR pin is low, so
I2C transactions use the 7-bit address 0x5A—
which is different from the address used
by the HTU21D (0x80), because the I2C bus
is shared. The RESET pin is an active low
input, and is pulled up to VCC by default, so I
connect an external 4.7kΩ pull-up resistance
(R3) to avoid erroneous resets. It is also
worth considering that the CCS811 sensor has
a 20-minute condition period before accurate
readings are generated. Furthermore, the
manufacturer AMS advises customers to
run the CCS811 for 48 hours, because the
performance in terms of sensitivity changes
during early use.

To ensure a simple and very small
assembly, I created an interconnection layer.
It is a small card that allows you to simply
connect the three cards without having to add
any other components. In Figure 3, the green
small card is in the center. The interconnection
board also includes a connection strip for
a battery, and the JTAG bus (VCC, SWDIO,
SWCLK, GND) to update the firmware. Finally,
for debugging purposes, I have included
some messages in the firmware during the
initialization and measurement phases. They
are sent through a serial interface that uses
pins P0.05 RX, P0.06 TX, P0.07 CTS and P0.12
RTS. If you connect a TTL-to-RS232 converter
to these pins, you can view information in
terminal as:38,400bps/8/none/1/no flow ctrl.

In Figure 4, you can see the top and bottom
copper layers of the interconnection layer. As
you can see, it is a small card with a very
simple scheme to connect the three breakout
boards together. Assembly takes place by

welding the cards to the interconnecting
layer, one above the other, like a sandwich. In
Figure 5 you can see the assembled prototype
board.

THE FIRMWARE
The firmware that runs on the core module

consists of two parts: a BLE protocol stack
(S110) and a user application. The nRF51
series SoCs are programmable with software
stacks available from Nordic Semiconductors.
These stacks are known as SoftDevice. They
make application development flexible,
so we can concentrate on the logic of the
user application. Moreover, it is possible to
integrate the same hardware on platforms
that use other protocols by replacing the
SoftDevice with the appropriate one. In this
project, the user application acquires the
values of the two sensors, and makes them
available to an Android app via Bluetooth by

FIGURE 4
The interconnection layer

FIGURE 5
The assembled prototype board

CIRCUIT CELLAR • JANUARY 2020 #35416
FE

AT
U

RE
S

calling SoftDevice’s BLE functions.
I used the SDK V.10 for the nrF51 series and

the SoftDevice S110—both supplied by Nordic
Semiconductors. Development of firmware/
software for BLE peripherals cannot be fully
explained in the few pages of an article. So,
I’ll only summarize the fundamental concepts
for understanding this project, referring to
the extensive literature that can be found on
the Internet.

The basic concepts—also used in the
app development—are: GAP, GATT and its
objects. GAP (generic access profile) defines
the general topology of a BLE network.
Connecting devices can have two different
roles: central and peripheral. In my project,

the central device (acts as a client) is the
smartphone, and the peripheral (acts as a
server) is the tag with sensors. The peripheral
uses GAP during the advertising phase, when
they send some frames to be discovered on
air from the central device. It is important to
note that a central-peripheral device can be
connected to multiple devices. In my project,
the smartphone can query the entire network
of tags one by one, thereby keeping the entire
home under control. When a peripheral is
connected to a central device, it stops to send
advertising data, so another device would not
be able to find the peripheral and connect to
it.

Every BLE peripheral has a profile GATT
(generic attribute profile). It is the top of
the ATT (attribute protocol)—a protocol
that defines how a server exposes data to
a client, and how they are structured. Every
profile contains definitions and properties
of services and characteristics. When you
connect to a device, you use GATT services
to communicate. A profile can have one or
more services, and each service can have
one or more characteristics. Usually services
represent features, whereas properties
define operations that can be performed on
a characteristic, such as read, write, notify
and indicate. Every attribute (service and
characteristic) is distinguished by its UUID

INITIALIZE AND LOAD BLE STACK
INITIALIZE GAP PARAMETERS [device name, connection interval]
INITIALIZE ADVERTISING PARAMETERS [advertising interval, timeout]
INITIALIZE CUSTOM SERVICE PARAMETERS [assign UUID, create characteristics, assign permissions]
INITIALIZE UART [only for debugging purposes]
INITIALIZE I2C BUS

HTU21D SOFTRESET
HTU21D CONFIGURATION [Resolutions: Temperature 12bits, Rel. Humidity 14bits]

CCS811 read HW ID [reading 0x81 for CCS811]
CCS811 read STATUS
IF APP_VALID=1 [a valid firmware image is present]
START SENSOR FIRMWARE [transition from boot mode to firmware mode]
CCS811 read STATUS
IF FW_MODE=1 [the sensor firmware is ready]
CCS811 CONFIGURATION MODE1 [measurement every second and interrupts disabled]
START ADVERTISING [to be found by a mobile device]
CUSTOM SERVICE LISTENING FOR CONNECTIONS SHARING TWO CHARACTERISTICS
MAIN LOOP
START TEMPERATURE MEASUREMENT
START REL HUMIDITY MEASUREMENT
CONVERT TEMP AND REL HUM VALUE
WRITE TEMP AND HUM IN CCS811 ENVIRONMENT DATA REGISTRY
WHEN READY READ ECO2 AND VCO
UPDATE CHARACTERISTICS IN CUSTOM SERVICE
END MAIN LOOP

LISTING 1
The firmware logical flow

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials

RESOURCES
Adafruit | www.adafruit.com

AMS | www.ams.com

Nordic Semiconductor | www.nordicsemi.com

TE Connectivity | www.te.com

Waveshare | www.waveshare.com

http://www.circuitcellar.com/article-materials
http://www.adafruit.com
http://www.ams.com
http://www.nordicsemi.com
http://www.te.com
http://www.waveshare.com

circuitcellar.com 17
FEATU

RES

(Universal Unique Identifier). The official BLE
standard adopted 16-bit UUIDs, while the
custom ones get 128-bit UUIDs assigned.

In my project, I define a custom service
with two characteristics. One is read
only, and contains a string of four values:
temperature, humidity, TVOC and eCO2. The
other is writeable and allows commands to be
sent to the tag. This second one will be used
for features that I would like to develop in the
future, such as activating/deactivating a tag
from the network, or starting a ventilation
system connected to the tag when certain
values are reached.

After explaining the basic concepts, it is
possible to better understand the firmware
logical flow, which is summarized in Listing 1.
As you can see, after the initialization of the
GAP, the advertising phase and the start of the
service that exposes the two characteristics,
the rest of the firmware is just an infinite loop
that reads relative humidity and temperature,
writes them to the CCS811 registry and then
reads TVOC and eCO2—updating the values of
service characteristics.

THE SOFTWARE
I developed the app using the Android

Studio development environment, and
an interesting template called Android
BluetoothLeGatt Sample that was provided
with the environment. This sample
demonstrates how to create a custom
service for managing connection and data
communication with a GATT server. You
therefore have every component necessary to
transmit arbitrary data between devices by
Bluetooth LE API.

Recently, a useful discussion space on
GitHub was created about this sample [6].
The GitHub discussion also contains all the
modification proposals, as well as code
examples. Obviously, I had to change the
sample for my purposes. Explaining how
to develop an Android app that uses the
Bluetooth protocol is beyond the scope of this
article, so I will focus on the most significant
changes I made.

The sample is created with a default
interface. The first step is to design the new
interface for viewing the four monitoring
parameters. I therefore inserted four
TextView controls, each connected to a data
field. TextView is a user interface control
that is used to set and display the text to the
user. One was for the temperature (id.temp),
one for the relative humidity (id.hum), one
for the TVOC (id.tvoc), and the last for the
eCO2 (id.eco2).

I placed a button linked to the
onClickUpdateData event, which updates
the interface data fields with the values in

the service characteristic that correspond to
those received by the tag via Bluetooth. The
definition of the various interface components
is grouped in the iaq_net_layout.xml file. This
file is read when the OnCreate function
(DeviceControlActivity.java) is
executed during the app boot. The correct layout
is loaded thanks to the setContentView(R.
layout.iaq_net_layout) instruction. In
DeviceControlActivity I also define the
mTemp, mHum, mEco2 and mTVOC data fields.

To complete the interface development, it
is necessary to remove the references to any
fields of old layout by inserting those to the new
layout fields, such as mTvoc = (TextView)
findViewById(R.id.hum), for the relative
humidity values. In this way we have linked
the interface to the internal variables that will
store the measured values.

Figure 6 shows how the app starts by
scanning all the Bluetooth devices present
in the surrounding area. Tap on the IAQtag
link (C8:41:E5:BF:8F:01 MAC address), and
the app will connect with the tag displaying
the detected data. Now, by clicking on the
“Update Data” button, the values are updated
in real time.

I then moved on to the development
of the functions for processing the values
represented in the interface. I added a
reading function for the service characteristic
r e a d C u s t o m C h a r a c t e r is t ic()
(BlueToothLeService.java), and inserted
in the function mGattUpdateReceiver the

FIGURE 6
Android app IAQnet

CIRCUIT CELLAR • JANUARY 2020 #35418
FE

AT
U

RE
S

necessary instructions when the measurement
data is ready to be displayed. In the firmware,
I chose to send the data from the tag already
preformatted in a string 20 characters long.
In the reception sequence I call a function to
extract the individual values and assign them to
the respective internal variables. At this point,
all that remains is to link the instructions to the
interface button interaction by entering a recall
to the readCustomCharacteristic()
(Listing 2).

When you click on the button, you call the
function readCustomCharacteristic,
and the following actions occur: the values
are requested from the tag that updates its
service characteristic, the characteristic value
is read by the smartphone via BLE updating
its own service, then the individual values
are extracted from the string and inserted
into the internal variables. These are linked
to the interface that displays values on the
smartphone screen.

From Android 5, for all the BLE apps
you need to add some permissions in the
manifest file to access the device location,
and call a function that requires the user
to authorize this activity when the app
is running. This can be done by adding a
verifyPermissions in the OnCreate
event (DeviceControlActivity.java), as
shown in Listing 3.

CONCLUSION
An interesting future development would

be to use the notification system to update the
data on the Android app. Notifications can be
sent to the client periodically or whenever the
characteristic value changes. The smartphone
can register for these notifications, so
ambient parameters (IAQ, Temp, Hum, eCO2)
are automatically displayed, rather than being
requested by a refresh command.

This project can serve as the basis for
developing any network of environmental
tags. It is sufficient to replace the sensors
with those needed for your application. The
changes to the firmware and the Android app
are relatively simple and relate to the same
functions implemented in this project. After
all, once the tag has taken the measurements
and made them available in the service
characteristic, they can be requested from
the app via Bluetooth.

Another feature I would like to implement
is a second service characteristic that is
remotely writable. You could use it to encode
a series of commands that could be interpreted
by the tag, which should execute them as
soon as they are sent via Bluetooth. For now,
I hope this circuit can be a starting point for
those who want to experience the world of
Bluetooth and Android development.

private void displayData(String data) {
 if (data != null) {
 //Extract data fields from received string
 mTemp.setText(data.substring(0,4));
 mHum.setText(data.substring(4,8));
 mEco2.setText(data.substring(8,12));
 mTvoc.setText(data.substring(12,16));
 }
}

public void onClickUpdateData(View v){
 if(mBluetoothLeService != null) {
 mBluetoothLeService.readCustomCharacteristic();
 }
 }

LISTING 2
Data extraction and link to interface
button interaction

LISTING 3
Permissions and a function to verify them

<uses-permission android:name=”android.permission.ACCESS_COARSE_LOCATION”/>
<uses-permission android:name=”android.permission.ACCESS_FINE_LOCATION”/>

public static void verifyPermissions(DeviceScanActivity activity) {
 int permission = ActivityCompat.checkSelfPermission(activity, Manifest.permission.ACCESS_FINE_LOCATION);
 if (permission != PackageManager.PERMISSION_GRANTED) {
 // We don’t have permission so prompt the user
 ActivityCompat.requestPermissions(
 activity,
 new String[] {
 Manifest.permission.ACCESS_COARSE_LOCATION,
 Manifest.permission.ACCESS_FINE_LOCATION,
 },
 1
);
 }
}

Exhibition organizer

NürnbergMesse GmbH

T +49 9 11 86 06-49 12

visitorservice@nuernbergmesse.de

Conference organizer

WEKA FACHMEDIEN GmbH

T +49 89 2 55 56-13 49

info@embedded-world.eu

@embedded_world #ew20 #futurestartshere

embedded-world.de/voucher

Nürnberg, Germany

February 25 – 27, 2020

DISCOVER INNOVATIONS
Over 1,000 companies and more than 30,000 visitors from 84
countries – this is where the embedded community comes together.

Don’t miss out! Get your free ticket today!

Your e-code for free admission: 2ew20P

Media partners

Fachmedium der Automatisierungstechnik

2ew20P
Your e-code for free admission

 embedded-world.de / voucher

ew20_213x283_USA_Circuit_Cellar_BES.indd 1 27.09.19 08:54

mailto:visitorservice@nuernbergmesse.de
mailto:info@embedded-world.eu
www.embedded-world.de/voucher
www.embedded-world.de/voucher

CIRCUIT CELLAR • JANUARY 2020 #35420
FE

AT
U

RE
S

I t’s amazing to see what kinds of sound
analysis can be done using a 32-bit
MCU. Our project is the construction of a
sound localization device. The Microchip

PIC32 microcontroller (MCU)-based device is a
triangular arrangement of microphones used to
localize the direction from which an arbitrary
sound is coming. By recording input from three
microphones, we were able to identify the time
delay between the audio recordings. These
time delays provide a means to compute the
direction of the sound.

The hardware for the project is made up of
three main parts: three microphone circuits,
a TFT (thin-film-transistor) LCD (liquid crystal
display) and a custom PIC32 prototyping board.
The prototyping board gives a breakout for pins
on the PIC32 in addition to 3.3V power, an SPI-
controlled DAC and an SPI-controlled TFT display.
The prototyping board uses the PIC32MX250F128B
[1], but theoretically, any PIC32MX MCU should
have the same hardware we used.

Each of the three microphone circuits
includes an electret microphone, a set of filters
and an amplifier. The output of each microphone
circuit is fed into an ADC channel on the PIC32.
The TFT display is used to show debugging
information and to point in the direction of the
sound. The full schematic is shown in Figure 1.

THREE-PART CIRCUIT
The microphone circuit consists of three

parts: The microphone itself [2], a high-pass
filter to center the signal around half voltage and
an amplifier, which uses an active band-pass
filter to amplify only frequencies of interest. A
Texas Instruments (TI) LM4562 audio op amp [3]
acts as the core component of the amplifier and
filter part of the circuit. Because the LM4562 is
not a rail-to-rail op amp and does not work with
3.3V, a different set of rails was required to keep
the op amp out of saturation. 9V were supplied
to the positive rail, and -3V were supplied to
the negative rail. Because we found that noise
from the MCU can get tracking into the audio
circuitry, the 3.3V supply for the microphones
was generated from a separate regulator with a
constant load constructed out of a few resistors.

The initial high-pass filter has a cut-off of
around 160Hz. The high-pass filter on the band-
pass amplifier was selected to roughly match
the cut-off of the initial high-pass filter. The
low-pass filter of the op amp was selected to
give roughly a 7.3kHz cutoff frequency. The gain
used was 100:1.

Each output from a microphone circuit was
attached to an I/O pin with analog functionality.
To protect these pins from any over-voltage or
under-voltage conditions, a pair of Schottky

Learn how these two Cornell students built a sound localization device. The employed a
Microchip PIC32 MCU and a set of microphones to determine the direction from which an
arbitrary sound is coming. They recorded input from three microphones to identify the
time delay between the audio recordings. These time delays provide a means to calculate
the direction of the sound.

Using a PIC32 MCU

By
JinJie Chen and Alvin Pan

Sound Localization

circuitcellar.com 21
FEATU

RES

diodes and a resistor were added to the output
to construct a voltage snubber. The Schottky
diodes provide a conducting path in case of
one of these conditions, while the resistor
limits the current flow through these diodes.

The TFT display shows debugging
information and points in the direction of the
source of the sound. The part we used is an
Adafruit breakout (part number 1480) [4] that
provides the TFT display, a TFT display driver
and an SD card reader (unused). The code for
this was a library that was adapted from the
library Adafruit supplied for running the TFT
with an Arduino. The TFT breakout uses an
SPI channel, along with a few other digital
I/O pins. Cornell’s ECE4760 course links to a
library for the TFT display that was adapted
from an Arduino library by Tahmid [5].

A Microchip Technology MCP4822 digital-
to-analog converter (DAC) [6] was used for
debugging the system but was not used for
the project itself. By sending the waveform to
the DAC at a rate of 5kHz, we can review what
the output of the system looks like. More on
that later in the results section.

SOFTWARE AND MATH
First, to locate the direction of the sound,

the system needs to record the reading

from each microphone channel. Second, the
recording of each channel is cross-correlated
with the next channel to identify the relative
time shift from one recording to the other.
Third, the relative timing between each pair
of microphone channels is used to compute
the direction of the origin of the sound
source. The relative direction is computed
from the timing differences and the physical
arrangement of the microphone placement,
to derive the direction of the sound source
in degrees. This cycle is repeated as quickly
as possible, and the direction estimates are
digitally low-passed using an averaging filter
to give an estimate of the direction of the
sound. Finally, the angle is written to the TFT
display to show the result.

The analog outputs from the three
microphone channels are connected to the
three separate ADC channels. The ADC is
configured to operate in a timer-triggered
sampling mode, which starts a new sample
each time the timer-interrupt flag is raised. It
is also set to sample three channels and store
the results as 16-bit signed integers in the
ADC’s internal buffer. The ADC is set to raise
an interrupt flag once every three samples.
To make the system run at the intended
frequency, the timer for triggering the ADC

FIGURE 1
Full schematic of the project, including MCU, microphones and power circuitry. Microphone and amplifier circuitry are on the right side.

CIRCUIT CELLAR • JANUARY 2020 #35422
FE

AT
U

RE
S

sampling is set to run three times faster than
the intended sampling frequency.

This causes the timer to trigger three
ADC samples—one for each microphone at
the intended frequency. A set of three DMA
channels is used to transfer the data from the
ADC output buffers and into storage. Once the
DMA channels are enabled, the DMA transfers
16-bit cells whenever the ADC interrupt flag is
raised. When the entire block is transferred,
the DMA channel raises the DMA_EV_DST_
FULL to signal completion of the transfer.
The computation_thread checks the
completion flag for all three DMA channels to
determine when to begin the computation of
the sound localization.

Once the microphone data is fully recorded
in the arrays, as indicated by the DMA_EV_
DIST_FULL flags, the time delay is calculated
between each pair of microphone recordings.
The main mathematical technique we use
to compute the time delay between two
signals—the microphone recordings—is cross-
correlation, which measures the similarity of
two signals by taking the sum each pair of
points in the signal as one signal slides along
another. The formula is as follows:

(f×g)[n]= f×[m]g[m+n]
m=-∞

∞

∑
	 [1]

Each correlation value gives the similarity
value between the first signal and the second
signal, shifted by some amount of time. The
index of the entry for the maximum value is
the time delay in units of the sampling rate.
For example, for the two square waves shown
in Figure 2, we see the result of taking the
cross-correlation (bottom graph).

CROSS CORRELATION
The cross-correlation gives a peak at the

maximum overlap. In this case, the orange
curve was used as the signal f in the equation,
and the blue curve was used as the signal g.
The maximum overlap is the time shift of f with
respect to g, which in this case is at -200 in both
plots. Although we referred to the position of
the peak as an index, we don’t mean an index
into an array. It simply means the location in
the signal. The index of -200 means that the
blue curve must be shifted backward in time by
200 time units to match the orange curve. To
get a long signal that we can easily measure, we
used a swept sine wave such as the one shown
in Figure 3, since a swept sine wave is not
repetitive. This prevented a situation where the
correlation gives a match for multiple different
time shifts.

Figure 4 shows the result of taking the
cross-correlation of a swept sine wave with
another swept sine wave, in which the distinct

ABOUT THE AUTHORS
Alvin Pan is a recent graduate in Electrical and Computer Engineering
and Computer Science from Cornell University with interests in embedded
systems and robotics. He can be reached at ap924@cornell.edu

JinJie Chen is a recent ECE graduate of Cornell University and now an
embedded software engineer at Google. He is particularly interested in
embedded system and edge computing. He can be contacted at
jc2554@cornell.edu

Time

Time

Signal

Cross-
correlation

1

0.5

0

100

50

0
−400 −300 −200 −100 0 100 200 300 400

0 100 200 300 400 500 600 700 800 900 1,000

FIGURE 2
Top: two identical square waves with a time shift. Bottom: the cross-correlation between the two square
waves shown in the top

Time

Signal

1

0

−1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

FIGURE 3
An example of a swept sine wave, also referred to as a chirp

Time

Cross-
correlation
value

1,000

800

600

400

200

0

−200

−400

−600

−800

−1,000
−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2

FIGURE 4
An example of the cross-correlation between two swept sine waves with a time shift of 0.05 units

mailto:ap924@cornell.edu
mailto:jc2554@cornell.edu

circuitcellar.com 23
FEATU

RES

// cross-correlate each pair of microphone recordings
void cross_correlate() {
 int channel, idx, shift;
 for (channel = 0; channel < num_mic_channel; channel++) {
 // shift the kernel -max_diff to max_diff of mic_data_size
 int correlate_channel = (channel + 1 > 2) ? 0 : channel + 1;
 for (shift = -(max_diff); shift <= (max_diff); shift++) {
 long tmp_sum = 0;
 // kernel size is mic_data_size - (2*(max_diff) + 1)
 for (idx = (max_diff) + 1; idx < (mic_data_size) - (max_diff); idx++) {
 int idx2 = (idx + shift);
 tmp_sum += (((long) mic_data[channel][idx] + mic_bias[channel]) * ((long) mic_
 data[correlate_channel][idx2] + mic_bias[correlate_channel]))>>2;
 }
 // save correlation results for DAC debugging
 correlate_data[channel][shift + (max_diff)] = (tmp_sum > 0 ? tmp_sum : 0)>>3;
 // update new max peak
 if (correlate_data[channel][shift + (max_diff)] > peak_max[channel]) {
 peak_max[channel] = correlate_data[channel][shift + (max_diff)];
 peak_index[channel] = shift + correlate_bias_adj[channel];
 }
 }
 if (abs(peak_index[channel]) < 2)
 peak_index[channel] = 0;
 }
}

LISTING 1
The code for computing a cross-correlation via direct application of the definition. Only the center region of on signal is used to avoid the need to normalize the results.

www. EarthLCD.com/cc1
949.248.2333

25 Years Embedded Display Experience

http://www.EarthLCD.com/cc1
www.cc-webshop.com
www.EarthLCD.com/cc1

CIRCUIT CELLAR • JANUARY 2020 #35424
FE

AT
U

RE
S

maximum gives the relative time shift between
the signals. In this case, the maximum is at
0.05, which indicates that the second signal
is shifted 0.05 time units ahead of the other.

In the process of computing the true
direction, we evaluate a few constants. First
is mic_data_size which is the size of the
array that holds the microphone data. This is
computed by taking [sampling rate] × [sample
duration]. Another is max_diff which we
use as the maximum value of the time shift of
the cross-correlation peak. max_diff is the
max possible shift geometrically possible, and
is computed by:

[length] ×
[sampling rate]

[speed] 	 [2]

where length is the length of one leg of the
triangular arrangement and speed is the
speed of sound. These values set how much
data is sampled and what region of the
sampled data is used in cross-correlation, as
discussed next.

The cross-correlations are calculated on
channel 0 with respect to channel 1, channel 1
with respect to channel 2, and channel 2 with
respect to channel 0. Each cross-correlation
is computed by sliding the middle (mic_data_
size - (2 × max_diff)) wide section of the first
recording fully along the second recording, to
compute the sum of dot products of the fully
overlapped recordings. The resulting cross-
correlation values are stored in an array of
size (2 × max_diff) + 1. Care must be taken to
ensure that (2 × max_diff) + 1 is reasonably
smaller than mic_data_size to ensure a
sufficient number of data points are used in
the computation. As the cross-correlation
values are computed, the peak value and
its associated time shift of each of the three
pairs are identified and recorded to compute
the direction of the source sound.

Listing 1 is the function used for the cross-
correlation. In this code, we compute cross-
correlation using the definition equation. A
section of one of the inputs is shifted across
the other input. Solving the cross-correlation
via an FFT (fast Fourier transform), element-
wise multiplication and IFFT (inverse FFT) has
a better run-time complexity for very large
inputs. However, we did not pursue this in
our project, because the coefficient of the
run time is unknown, and our input size is
bounded by the parameters we define.

The direction of the sound source is
computed using the three peak_index
values identified in the cross-correlation
calculations. In this case, the name “peak_
index” is a bit of a misnomer, since these
values actually represent the time shift, and
not an index into an array.

To measure the direction, the time delay
between each pair of microphones is used
to compute an angle for each pair. The angle
is computed by using the distance between
the two microphones and the distance sound
travels in the measured time delay. That is:

angle =

arccos
[measured time delay]×343[m/s]

[mic distance]





 	 [3]

This angle is calculated between two
microphones, but leaves ambiguity for
which side of the two microphones the
sound comes from. Each time delay results
in both the black arrow and the red arrow
(Figure 5). We compute an angle for each pair
of microphones and then use the arrangement

Sound
source

Microphone

Microphone

Microphone

FIGURE 5
An example in which
the sound comes from
the direction indicated
by the large blue arrow.
The other smaller angles
show the angle estimates
given by the correlation
between the two
microphones. The tails of
the arrows start from the
edge that sits between
the two microphones that
were correlated together.

0

1 2

FIGURE 6
The arrangement of the microphones with an example sound source. Computation for the sound directions
assumes that the sound source is far from the microphones.

circuitcellar.com 25
FEATU

RES

of the microphones, shown in Figure 6 to
remove the ambiguity.

Using each time shift, we can determine
to which microphone the correlation indicates
that the sound is closer. For example, in Figure
5, each pair of arrows sitting between a pair
of microphones points toward one of the two
microphones. In the case of Figure 5, these
indicate microphone 0 for each of the upper
two legs of the triangle, and microphone 1 for
the lower leg. Using the arrangement of the
three microphones, as long as the time shifts
do not all indicate different microphones, a
60-degree range can be selected, as depicted
in Figure 5 by the dotted dividing lines.

ANGLE ANALYSIS
As noted earlier, each angle estimate gives

two possible angles. In Figure 5, the correct
angle is marked in black, and the false angle
is marked in red. For any of the 60-degree
regions, one angle estimate always faces

outward (of the triangular arrangement),
and one faces inward. The remaining angle
estimate is ambiguous. The outward-facing
angle is the angle computed from 0-1, the
inward-facing angle is the angle computed
from 1-2 and the ambiguous angle is the
angle computed from 2-0. Note that if the
direction the sound came from was a bit
closer to microphone 0, then the correct
direction would be outward-facing rather
than inward-facing, which it is now. First,
the two angle estimates that are on known
sides are computed and averaged together.
Using this averaged value, the side for the
ambiguous side is chosen by evaluating which
is closest to the averaged value. This gives the
last angle estimate. All three of these values
are then averaged together, which gives the
final angle estimate.

One of the six possible ranges of 60 degrees
is selected by taking the sign of the time shift
and converting it into a binary encoding. This

int val = (peak_index[0] > 0) << 2 | (peak_index[1] > 0) << 1 | (peak_index[2] > 0);
int idxP = -1, idxN = -1, idxU = -1;
switch (val) {
 case 0b110: //0-60
 idxP = 0;
 idxN = 1;
 idxU = 2;
 break;
 case 0b010: //60-120
 idxP = 0;
 idxN = 2;
 idxU = 1;
 break;

 ...

}
int x;
for (x = 0; x < 3; x++){
 lim_index(peak_index[x]);
 angles[x] = ((double) peak_index[x])/((double)(max_diff));
 angles[x] = acos(angles[x]);
}
angles[idxP] += angles_adj[idxP];
angles[idxN] *= -1.0;
angles[idxN] += angles_adj[idxN];
lim_angles(angles[idxP]);
lim_angles(angles[idxN]);
angle = angles[idxP] + angles[idxN];
if (range_checker(idxU, angle))
 angles[idxU] *= -1.0;
angles[idxU] += angles_adj[idxU];
lim_angles(angles[idxU]);
double x_pos = cos(angles[idxP]) + cos(angles[idxN]) + cos(angles[idxU]);
double y_pos = sin(angles[idxP]) + sin(angles[idxN]) + sin(angles[idxU]);
angle = atan2(y_pos,x_pos);

LISTING 2
The code for computing the sound source's direction. The [...] section omits additional cases for brevity.

CIRCUIT CELLAR • JANUARY 2020 #35426
FE

AT
U

RE
S

is done in the switch statement in Listing 2. Only the first two cases were
included in Listing 2 for brevity. It turns out the computations for each of the
six ranges are similar, and we simply need to swap which angles estimates are
the outward, inward, and ambiguous ones. This is done by using idxP, idxN
and idxU, which represent the index of the outward angle, the index of the
inward angle and the index of the ambiguous angle, respectively, where index
here identifies which cross-correlation time shift is used. The helper function
range_checker determines if the ambiguous angle is outward or inward,
based on the angle estimate given. The array angles_adj holds the offset
of each angle estimate with the baseline direction. In this project, it is the
direction of microphone 0. The other helpers lim_angles and lim_index
limit the range of values to within the range of angles and indices, respectively.

The low-pass filter, which averages the new angle with the old angle to
produce the result, is not shown. The process is the same as averaging the
three angles, except that the component values of each vector are weighted
to set the cut-off frequency of the low pass.

Averaging angles has a pitfall, in that angles wrap around. Say we wish to
average two angles, 170 degrees and -170 degrees. We would like this to give the
value 180 or -180 degrees, but a simple averaging of the angles gives the angle 0,
which is the exact opposite of what is desired. To average the angle correctly, we
instead convert each angle into a unit vector and average the components. The
average vector is then converted back into an angle, giving the average angle.

FIGURE 7
Oscilloscope traces of the original waveform of the cross-correlation computation output from an early
prototype. The upper trace illustrates recorded signal from one of the microphones, and the bottom trace
shows the cross-correlation result from a pair of the microphone channels. Traces such as shown were used
for debugging the system.

RESULTS
The sound localization worked reasonably

well. Although the computation delay was
almost indistinguishable when we ran single
sweeps, the delay turned out to limit the max
accuracy of the system, since it relies on an
average of multiple sweeps. The final version
of the device used 20cm legs on the triangular
arrangement, an 80kHz sampling rate, and
0.025 second sampling time. The remaining
parameters were all derived from these values
and computed at compile time, using C macros.
Using multiple sweeps, we were able to get
the system to home in on the direction of the
sound. Figure 7 shows oscilloscope traces of
the original waveform of the cross-correlation
computation output from an early prototype.

The upper trace in Figure 7 illustrates
recorded signal from one of the microphones,
and the bottom trace shows the cross-correlation
result from a pair of the microphone channels.
A high signal is used on the cross-correlation
trace to show when the data start and end. This
gives us a point at which to set the oscilloscope
to trigger, and allows us to see where the start
and end of the cross-correlation are, along with
the relative location of the peak. In this image,
the peak is roughly centered, showing that the
sound signals arrived at the two microphones at
the same time.

The plot differs from the cross-correlation
of the swept sine wave examined in the
math background, because this plot takes
the absolute value of the cross-correlation.
In testing, we found that swept sine waves
picked up by the system almost always had
nicely formed cross-correlation plots, such as
the one shown in Figure 7. However, we found
that the location of the peak wouldn’t always
be in the same place. Further testing and
experimentation showed that adjusting the
circuit to have a well-defined phase shift for
each frequency was key to making the system
work. It’s essential that all filtering and
amplification circuits have the same phase
shift for every frequency.

After reworking the circuitry and moving
to op amps with a higher gain-bandwidth
product (from the MCP6242 to the LM4562),
we found that the system appeared to get the
angle correct to within 30 degrees in the
worst case, and usually within 15 degrees of
the correct location. In a more controlled
environment, it is highly likely that the system
would achieve better performance. The
environment in which we tested the device
was cluttered with lab equipment, which gave
reflected sound waves and multipath
distortion. Our code is based on examples
given in Cornell’s ECE4760 course website [7].
The linked pages also contain the example
code that our code uses as a basis.

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials
References [1] through [7] as marked in the article can be found there

RESOURCES
Microchip Technology | www.microchip.com

Texas Instruments | www.ti.com

http://www.circuitcellar.com/article-materials
http://www.microchip.com
http://www.ti.com

circuitcellar.com 27
FEATU

RES

R eal-time embedded systems
require a specialized class of
electronic components from
vendors that can support the

special needs of systems integrators. Not
only must the hardware products operate
across a wide range of operating modes
and environments, they must also deliver
performance levels meeting critical objectives
for specific applications. But other factors
may be even more important.

Because each project is unique, good
system development tools are essential for
systems integrators to deliver operational
systems to their final customers as efficiently
and effectively as possible. And, the vendors of
these hardware and software products must
help integrators choose the most appropriate
products, support them during development,
and then offer life cycle management solutions
for continued product availability.

By following some key recommendations
in making product and vendor choices,
integrators can significantly avoid risks and
reduce development efforts. A summary list
of these tips is shown in Table 1.

HARDWARE TIPS
Open Standards: Increasingly, both

government and non-government procurement
requirements now mandate or encourage
compliance with emerging open-system
standards for embedded hardware components.
Among the many benefits are interoperability
among vendors, faster deliveries and
competitive pricing. Instead of replacing an
entire system for a new technology upgrade,
open standards allow replacement of compliant
modules more quickly and at far less cost,
thus extending the useful life cycle of deployed
systems.

By following open standards, vendors also
benefit by focusing design and development
efforts on their areas of expertise, while
other vendors produce complementary and
compatible products to round out the supply
chain. This fosters government confidence in
relying upon these open standards for future
long-term programs.

Thermal management: As silicon device
geometries continue to shrink, the power
dissipation per transistor or element tends
to drop, but this is often offset by increased

There are many factors to consider when selecting components and board-level solutions
for a real-time embedded system. In this article, Pentek’s Rodger Hosking steps through
10 key tips that can help you significantly avoid risks and reduce development efforts.

10 Key Tips

By
Rodger Hosking,
V.P. and Co-Founder of Pentek

Choosing Real-Time
Embedded System
Products

CIRCUIT CELLAR • JANUARY 2020 #35428
FE

AT
U

RE
S

clock rates. In addition, more elements can fit
in a given size package, which drives power
per device back up. Fine-pitch ball grid array
packaging boosts component density of PCBs,
often causing significant heat per slot in
today’s embedded systems.

When designing a new embedded system,
it is imperative that designers identify
heat sources for each module as early
as possible. For harsh environments, the
popular VPX specification defines numerous
available solutions, including forced-air, air
flow-though, conduction-cooling and liquid
cooling. Less demanding environments are
often suitable for PC platforms. Selecting

the most appropriate platform and thermal
management strategies at the beginning of a
project can avoid costly redesign cycles and
serious delays.

System Interfaces: One of the toughest
challenges in real-time system design is
connecting system elements via data interfaces
capable of handling the required traffic. Start
by creating an overall system block diagram
containing all essential elements, showing
the data interconnect paths between them.
Make sure that the interfaces on connected
blocks match in type, bus width, lanes and
data rates, and enter that information on the
block diagram. Then, calculate and notate the
worst-case data transfer rate required for
each path, and compare it with the maximum
path rate. This assessment of interconnect
speeds will be an invaluable reference during
development.

Some caveats to watch out for are
interfaces that pass through several physical
connectors, like a PCI Express link from an
XMC module, through an XMC carrier that is
plugged into a VPX backplane. Every connector
can compromise maximum achievable rates.
In these cases, modeling or functional test
verification can help.

Shared resources, such as system memory,
may have multiple contenders for access,
resulting in compromised availability. Signals
like received radar pulses can generate blocks
of high peak rates separated intervals with no
data. An elastic memory buffer (FIFO) may be
required to take advantage of the low average
rate for transfer across the interconnect path.

Synchronization: A growing number of
phased-array antenna application, including
5G wireless, airborne and SAR radars, and
directional communication links, all require
multiple element antennas to support
beamforming for receive and transmit
(Figure 1). Each antenna element signal
requires precisely controlled, programmable
phase shifts relative to all of the other
elements.

Each signal often connects to a dedicated
data converter where DSP circuitry can easily
handle these precise phase shifts. However,
the data converters must acquire and
generate each sample at exactly the same
sample clock edge. For large arrays, the high
number of elements may require synchronous
operation across multiple boards or chassis to
handle all the channels.

Such operation can only be achieved
if this feature is part of the board design,
and supported with timing and sync
generators connected to each board. If
channel synchronization is part of the system
requirement, make sure the boards inherently
include this feature with recommended

TABLE 1
Checklist of critical tips for choosing real-time embedded system products

Tips for Choosing Real-Time Embedded Systems
Choose open standard products for best value and life cycle

Define thermal management strategies early in the project

Identify all interconnections, including speeds and levels

If required, define early on how channels are synchronized

Identify all necessary clocking, timing, and DMA functions

Check for software, drivers, and examples of the above

Look for high-level C libraries with underlying source code

Identify which FPGA structures are included and supported

Decide who performs the required custom FPGA design efforts

Ensure graphical FPGA design entry tools support your boards

Look for AXI4-complaint FPGA IP blocks from the board vendor

Look for FPGA application examples from the board vendor

Understand the board vendor’s applications support policy

Look for the board vendor’s life cycle management programs

FIGURE 1
Massive MIMO (phased array) 5G Wireless antennas can enhance signal coverage at specific elevation and
azimuth angles for faster speeds and more users.

circuitcellar.com 29
FEATU

RES

connectors, cables and sync generators,
because synchronization is otherwise nearly
impossible to add later.

Installed Features: Real-time embedded
boards playing typical roles in any system should
include several basic functions supporting
their assigned roles. For example, a single
board computer (SBC) or PC motherboard will
almost always implement a PCI Express root
complex, system memory mapped across PCI
Express address space, network interfaces,
and CPU peripheral I/O like USB, serial and
video. Standard CPU chip sets include virtually
all of these functions, and supporting software
drivers for Windows or Linux are commonly
provided by the board vendor.

Other boards, like FPGA software radio
modules with A/D and D/A converters, have far
different roles and requirements. Commonly
needed functions here include triggering,
gating, time-stamping and synchronization
engines that meet tight timing demands.
Sample clock frequency synthesizers should
accept a 10MHz system reference from an
onboard GPS receiver or external source.
DMA controllers must move data between the
data converters and system memory through
a PCI Express interface. Memory controllers
for external SDRAM must buffer and capture
real-time data converter streams, and
communicate with the PCIe interface.

Unlike SBCs or PCs, which benefit from
standard chip sets with low-level BIOS
initialization, none of this exists for software
radio boards. Instead, each of the hardware
resources must be developed and incorporated
in the FPGA. Equally important are the
software libraries and drivers needed to make
all of these resources work as required. Unless
the board vendor includes them as factory
installed features along with the supporting
software libraries, the system integrator
must develop, design, test, and document this
on his own. To minimize risks, expense, and
uncertain delays, systems integrators should
make sure the board vendor includes these
important resources.

DEVELOPMENT TIPS
Software Development: Although open-

system architectures help with electrical
and mechanical interoperability, all real-time
embedded systems are a collection of diverse
hardware elements that must be carefully
configured for a specific, unique application.
Unlike mass market PC boards with plug-
and-play capabilities, most embedded
boards must be explicitly configured to
perform specific tasks, told how to utilize
specific external input, output and timing
signals and instructed what, when and how
to communicate with other boards in the

system. This is invariably accomplished by
writing custom C programs that execute on
the system controller, typically running Linux
or Windows OS.

Even if an embedded board vendor provides
C-callable functions for programmable
hardware features, those offerings vary
widely among vendors in their completeness
and usability. Some offerings simply provide
access to the programmable registers for the
devices on the board, and the developer must
use data sheets from the device manufacturer
to figure out which bits to set. Even with a
detailed block diagram of the board, this is
very cumbersome.

In a far better approach, the board
vendor offers high-level C libraries with
well-documented command parameters that
relate to the overall board-level operations
performed, including references to other
operations affected. Each of these high-level
commands should include a well-organized
underlying collection of low-level libraries to
allow modification for specialized operations.

An even more elegant offering is a true
API (application programming interface)
with an API command processor program
running on the system controller. In this way,
API commands can be sent to the controller
where they are parsed and executed, without
needing to recompile a dedicated, executable
C-program. API commands can be delivered to
the controller via Ethernet, nicely supporting
control and status functions of the embedded
system from a remote client.

Last, numerous C program examples that
illustrate typical operating scenarios are
extremely valuable. They incorporate multiple
high-level function calls with comments
explaining the purpose of each, including why
they must be executed in a specific order.
Often these fully-tested examples can be
incorporated directly into the final application
to speed development. Of course, full C source

ABOUT THE AUTHOR
Rodger H. Hosking is v ice-president and
co-founder of Pentek, where he is responsible for
new product definition, technology development
and strategic alliances. With over 30 years in the
electronics industry, he has authored hundreds
of articles about software radio and digital
signal processing. Prior to his current position,
he served as engineering manager at Wavetek/
Rockland, and holds patents in frequency
synthesis and spectrum analysis techniques.
He holds a BS degree in Physics from Allegheny
Col lege and BSEE and MSEE degrees from
Columbia University in New York.

CIRCUIT CELLAR • JANUARY 2020 #35430
FE

AT
U

RE
S

code should accompany all library functions
and code examples.

By selecting vendors offering these
higher-level tools, systems integrators can
complete their development tasks much more
quickly and will be able to support changes
and future upgrades far more easily.

FPGA Development: FPGA designs are
really hardware designs, in which the basic
hardware resources of the FPGA (thousands
of gates, adders, multipliers, registers,
switches, memories and interfaces) are wired
together to create custom circuits. The wiring
connection pattern is generated by software
tools from the FPGA vendor that compile
descriptive instructions from the designer to
create a “bitstream.” When loaded into the
FPGA, the bitstream implements the required
interconnects for the required circuit, often
simply called “IP.”

As mentioned earlier, the board vendor
may install some standard IP functions at the
factory. But many customers need to install
additional custom IP within the FPGA for
compute-intensive, real-time algorithms. These
algorithms are often the systems integrators’
“secret sauce,” comprising their critical value-

added contribution to the equipment. The
ease of adding IP by the customer is highly
dependent on the quality of the FPGA design
package supplied by the board vendor.

First of all, look for a board vendor that
includes most of the essential factory-
installed features, like the ones described
earlier. It will dramatically reduce the overall
FPGA design effort. No one wants to spend
years developing a JESD204 data converter
interface or a DDR4 SDRAM controller!

Next, be sure the board vendor supplies
FPGA source code for all of the installed IP
modules in the HDL format matching your
FPGA designers’ capabilities, usually VHDL or
Verilog.

Ideally, all IP from the board vendor will be
delivered as AXI4 compliant blocks to match
the style of reference IP blocks from the FPGA
vendor. AXI4 is a widely adopted interface
standard derived from ARM technology that
tackles most of the housekeeping chores for
connecting one IP block to another.

Take full advantage of the graphical design
entry tools from the FPGA vendor, such as
Xilinx’s Vivado IP Integrator. All of the AXI4
blocks are visually displayed, representing
the entire block diagram of the project
with all interconnects shown. IP blocks and
interconnects can be added, deleted, and
modified with mouse clicks, and hyperlinked
documentation is available by clicking on any
block. After making the required changes,
the project is recompiled to produce the new
design and bitstream for the FPGA.

Choose a board vendor that delivers the
entire FPGA project folder containing all the
files needed to create the delivered FPGA
IP, fully AXI4 compliant, with complete
documentation, and ready to compile using
the FPGA vendor’s tool suite.

VENDOR TIPS
New Technology: One of the major

benefits of open standard COTS products is
upgradability of existing systems with new
technology by replacing a module instead of
scrapping the system and starting over. Of
course, depending on the upgrade, changes
will often be needed to system software and
perhaps even to some of the other hardware,
interfaces or connectors. Still, this is a well-
proven strategy for extending the useful life
of deployed equipment.

Choose board vendors with a history
of consistently delivering open-standards
products based on each new generation
of FPGAs, data converters, memories,
and system interfaces. Look for high-level
development tools from those vendors to
simplify the migration of software and FPGA
designs.

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials

RESOURCES
Pentek | www.pentek.com

FIGURE 2
Pentek Model 5950 Zynq UltraScale+
RFSoC 8 Channel A/D and D/A VPX
module.

http://www.circuitcellar.com/article-materials
http://www.pentek.com

circuitcellar.com 31
FEATU

RES

Applications Support: Because every embedded system tends to be unique,
systems integrators invariably encounter first-time configurations of multi-
vendor products that don’t seem to work as expected. Too often, each vendor
blames another vendor for the problem, leaving the integrator on his own.
Choose vendors with a proven track record of solving problems, regardless of
who is at fault and share such experiences with other project teams.

Most board vendors offer contracts to provide technical support during
the development phase, although the quality and timeliness of that support
varies among vendors. When the support contract runs out, before they can
get additional help, customers will either be asked to renew the contract, or
for a credit card number. Some vendors offer free support for a limited time or
number of hours, with payment required thereafter.

Be sure to ask any potential vendor for written descriptions of the applications
support policies and costs before purchasing his products.

Life Cycle Management: Often, a significant concern for systems integrators
is the increasing prevalence of component obsolescence, or end-of-life. This
causes two major problems. Future component availability can jeopardize on-
going production of enough boards to support multi-year installation program
cycles. Also, 20- to 30-year maintenance contracts to support these fielded
systems are at risk without components needed for repairs.

Systems integrators naturally look to the board vendors for help, and
various strategies have emerged. The simplest one is to purchase and produce
enough additional boards up front to cover all installations over the life of the
program, plus spares to cover the expected number of failures. End customers
usually balk at the cost of this approach.

A very cost-effective alternative is a bonded inventory component program.
The board vendor purchases all of the active components needed for the
production of the total number of boards required over the life of the program,
plus extras for repairs. The customer agrees to pay for these components,
which the vendor reserves for him in bonded inventory. When production
is required, those parts are used and their cost is credited toward the new
purchase.

Since components such as PCBs and hardware can always be purchased
as needed for later production, the cost of this bonded inventory program is
a small fraction of the cost of full production up front, and very attractive to
most customers.

PUTTING IT ALL TOGETHER
As an example of these strategies developed over three decades, Pentek’s

latest offering is the Model 5950 Quartz RFSoC 3U VPX module (Figure 2).
Following the VITA 65 OpenVPX standard, this powerful software radio board
combines eight channels of wideband A/D and D/A conversion, a wealth of Xilinx
Zynq UltraScale+ FPGA resources, and a multi-core Arm processor to handle
system controller functions.

Factory-installed features include IP for wideband data acquisition,
triggering, timing, and multi-channel synchronization. A waveform generation
engine creates analog signals from customer-created waveform tables or
from an on-board frequency synthesizer and chirp generator. Linked-list DMA
controllers move data from the board to and from the PCIe Gen.3 x8 interfaces
and two 100GigE interfaces, each capable of sustaining 12GB/s.

All of these resources are supported with software development tools under
the Pentek Navigator Board Support package. It includes a high-level API,
C-language libraries, a command processor for the Arm, complete C source
code, and fully functional starter applications. For custom FPGA development
Pentek’s Navigator FPGA Design Kit contains the complete Xilinx Vivado project
for the Model 5950, and a library of over 140 Pentek AXI4 IP modules for adding
new features.

Pentek offers free lifetime applications support and well-development life cycle
management and bonded inventory programs. By introducing a constant stream
of industry-leading, open standard board level products with the latest data
converters and FPGAs, Pentek helps systems integrators to take earliest advantage
of the newest technology.

Digital Multimeter

LCR-Reader.com

Diode mode

Oscilloscope mode
M

ad
e in Canada

Fabriqué au Canada
LCR-Reader-MPA

Ultimate PCB debugging tool

NEW
MODEL

L-C-R, AC/DC Voltage/Current

LED/Diode/Continuity Test

Oscilloscope

Frequency, Period, Duty Cycle

Signal Generator

Super Cap Testing

Basic Accuracy 0.1%

Test Frequency: 100 Hz to 100 kHz

Test Signal Level: 0.1, 0.5, 1.0 Vrms

All-in-One
Digital Multimeter

www.LCR-Reader.com

CIRCUIT CELLAR • JANUARY 2020 #35432
FE

AT
U

RE
S

A “system controller” can be
defined as a system on a board or
a platform capable of managing,
controlling and monitoring

the entire platform—right from power to
communication. A system controller can be
used not only to manage a platform, but also
to test the peripherals of the platform, which
reduces the cost of manufacturing test.

As electronic devices become more complex,
the platforms for these devices also have become
huge. Test coverage of the entire board for
various features can become difficult especially
when it’s a SoC that has multiple peripherals
with different power controls on it. Such types
of systems require an equally competent
controller onboard that can easily manage and
control the entire set of knobs. In my article
“Designing Manufacturing Test Systems”
(Circuit Cellar 352, November 2019) I discussed,
various ways of testing a board. In this article,
we will discuss one aspect of that with a system
controller on board. All that said, much of this
article will focus on the management of knobs
and monitoring the system.

After the initial development, this can act
as a “black box” and can sit on any other
platform to perform different actions. This
is presented in two parts to help readers

understand how to design a system controller
using Xilinx Zynq Ultrascale+ FPGAs and Xilinx
tool chains. Here, we’ll discuss the hardware
aspects of the system including the design,
the building blocks, the algorithm and so on.
In Part 2, coming next month, I’ll discuss the
software and firmware of the project as a
part of complete system integration.

DESIGN STEPS
Designing a system controller involves

brainstorming from both a hardware and a
software point of view. Figure 1 shows the
block diagram of a generic system controller.
A typical system controller needs a robust
processor, a communication block, a memory
block, a clock and a power management block.
Any number of additional features could be
added to this list.

As shown in Figure 1, we have used the
Zynq Ultrascale+ FPGA as the central core of
the system controller. The Zynq Ultrascale+
device is broadly divided into two parts: PL
and PS. The PS part is the Arm processor while
the PL part is Xilinx proprietary hardware
block, which does actual FPGA related tasks.
To understand details on how Zynq Ultrascale
Plus device works, you can read the technical
manual [1].

In his November article, Xilinx’s Nishant Mittal discussed ways of various
ways of testing a board. In this two-part series, Nishant expands on that
topic, this time discussing the design of an FPGA-based system controller
built for testing and managing complex platforms. Part 1 focuses on the
hardware aspect of the system, including the hardware design, building
blocks, algorithm and so on.

The Hardware

By
Nishant Mittal and
Manoj Khandelwal

System Controller
Manufacturing Test (Part 1)

circuitcellar.com 33
FEATU

RES

Ethernet is an essential part of the system
controller because it helps to control the board
from the distance location and enables you
to work with the board remotely. UART is a
critical element for debugging. The UART is an
essential component because it enables you
to work with the board locally by connecting
the PC to the board via the FTDI circuitry of
the UART using a USB Type-A or Type-B cable.

The system controller we’re building here
is designed to run Linux onboard. In other
words, the system controller will be able to
boot up Linux and have Linux perform all
of the controller’s operations. In order to
boot Linux—or to transfer any information
to the Linux OS—we can use an SD card or
an onboard EMMC drive that can boot the
processor as well as store information.

Complex platforms bring with them the
need to have multiple knobs to control. Power
management and clock control are the major
knobs to be controlled. Generally, these knobs
are all I2C devices and can be connected to a
single bus by adjusting the pull up resistors.
Using the I2C mux, the number of devices per
bus can also be increased. A number of GPIO
banks are also necessary. These GPIOs help to
provide enable/disable signals, control signals,
control LED representations and so forth.

BRING OUT THE TOOLS
Now that the block diagram is defined, we

now need to need to understand the overall
system requirements and plan the design.
To make this design possible, we made use
of the PetaLinux tool from Xilinx to create
a bootable image to be loaded which has

Xilinx board support package. In Part 2 of
this article, we’ll discuss PetaLinux and how
to use it to create the bootable image. Once
booted, the Linux system then probes all the
devices and enables them. Apart from that,
it will also perform power management and
clock management using PMBUS protocol and
I2C protocol.

Other miscellaneous items such as
EEPROM, SPI LCD and GPIOs can all be
controlled using standalone applications
dumped in the system controller Linux image.
All these software aspects will be discussed in
detail in Part 2.

Once the overall mapping of the peripherals
is done, it’s time to create the hardware design
of the system controller using Xilinx’s Vivado
tool. Vivado is a hardware design tool that
lets you not only design own IP (intellectual
property) blocks, but use existing IPs and
connect the blocks using the interactive GUI.
The tool can be used to create a “bit” file and
an “hdf”—the hardware design file. These two
files are necessary to create the Linux image
using the file’s Xilinx Board Support Package
information.

HARDWARE DESIGN
The Vivado tool gives users a visual

representation of what the hardware looks
like and how it’s going to map to the actual
device. If you’re not already familiar with
Vivado, we recommend you take a look at
the Vivado the tool guide [2] before reading
through this section.

When you first open the Vivado tool, a
good first step is to drag and drop the Zynq

FIGURE 1
Typical block diagram of a system
controller

I2C Clock

SPI

PL
(Hardware) PS

(Arm Processor)

SD Card EMMC

UART

GPIO
Bank

I2C0

PMBUS
Devices

PMBUS
Devices

I2C
Clocks

GEM⁄
Ethernet

I2C
Mux

Zynq
Ultrascale +

FPGA

CIRCUIT CELLAR • JANUARY 2020 #35434
FE

AT
U

RE
S

Ultrascale+ processor into the drawing
window. That processor is the heart of the
project, which will connect to all the other
peripherals. When you double click that
processor block of the FPGA, you can see the
overall block diagram of the FPGA. At this
point, the entire device is reconfigurable.
Given that power is a major concern, it’s
always a good idea to enable only those
blocks that are required for the design and

disable the rest of the blocks. Doing that not
only consumes less current but also reduces
the compilation time. The more hardware
you enable, the more time the software will
take to create a netlist.

Figure 2 shows the block diagram of the
Zynq MP block. Here, we enable Ethernet, SD,
eMMC, UART I2C and GPIOs. You could also
add Soft IP, which will then get routed through
the AXI interface to the IP. Figure 3 shows
the hardware design for the system controller
that we talked about in the previous section.
Here we have an AXI I2C block that comes
from the PL side. We have an AXI interconnect
in between that handles all the addressing
and clocks—along with signaling to prevent
data loss. Because most of the blocks are on
the PS side (Figure 2), they won’t be visible in
the front-end GUI of Vivado.

Once this is done, we need to write the
constraints for the design. These include
specifying the clock max, assigning pins
to the interfaces, setting the default state
of the pins and so on. All that information
goes into the .xdc file. Here is an example of

ABOUT THE AUTHORS
Nishant Mittal and Manoj Khandelwal are both Systems Engineers with Xilinx
in Bangalore, India.

FIGURE 2
Block diagram of the Zynq MP as seen from Vivado tool

PS UltraScale + Block design

RPU
APU

IOU

To
EMIO

SYSMON

Core SW

CSU PMU LPD-DMA

GPIO

Clocking

CCI

FPD_DMA

DDR Controller
(DDR3, DDR4, LPDDR3, LPDDR4)

QSPI
NAND ONFI 3.1

GEM 2
USB 0
SD 0⁄
eMMC
SPI 0
CAN 0 CAN 1

SPI 1

USB 1

GEM 1
GEM 3

MIO

OCM (256 KB)

Configurable
FPD
LPD

PL

AXI
LPD

HPM
LPD

2 × HPM
FPD

4 × S-AXI
HP

2 × S-AXI
HPC

S-AXI
ACE

S-AXI
ACP-FPD

AMS

PS-PL
Configuration

GPU Mali-400

SATA 0

Display port

PCIe Gen2 × 1⁄×2 ⁄×4

SATA 1

I2C 0 I2C 1
UART 0 UART 1

GEM 0

SD 1⁄
eMMC

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials
References [1] and [2[as marked in the article can be found there.

RESOURCES
Xilinx | www.xilinx.com

http://www.circuitcellar.com/article-materials
http://www.xilinx.com

circuitcellar.com 35
FEATU

RES

some of the constraint properties:

set_property PACKAGE_PIN AC14 [get_ports EMIO_GPIO_tri_io[0]]
set_property PACKAGE_PIN AC13 [get_ports EMIO_GPIO_tri_io[1]]
set_property PACKAGE_PIN AA13 [get_ports EMIO_GPIO_tri_io[2]]
set_property PACKAGE_PIN AB13 [get_ports EMIO_GPIO_tri_io[3]]
set_property PACKAGE_PIN AB15 [get_ports EMIO_GPIO_tri_io[4]]
set_property PACKAGE_PIN AG13 [get_ports SYSCTLR_SI570_scl_io]
set_property PACKAGE_PIN AH13 [get_ports SYSCTLR_SI570_sda_io]

We see that AG13 and AH13 are declared as scl and sda for SI570 which is the clock
frequency generator. AA13, AC13, AC14, AB13 and AB15 are declared as tristate GPIOs.
Similarly, you can declare your own set of GPIOs based on the platform connections to the
system controller. At this stage, the design is ready. Now it can be compiled to generate the
.bit and .hdf files. If the design fails, you can use gate level synthesis to understand the reason
for failure. That can root out anything from a timing violation to some messy connection. Now
that the design is ready, the next step is to bring the design to life using various software
tools. Note that system controller need not be present on the same platform board. It can be
a separate board if desired, depending on the budget or other user requirements.

CONCLUSION
In this article, we explored the features of system controller and gained an understanding

of how it can be useful from various design perspectives. We also learned how to design the
hardware part of the system controller using the Vivado toolchain. In Part 2 next month, we’ll
take a deep dive into the software side of the design, and look at how to bring alive the
hardware we designed in this part.

ZYNQ
UltraSCALE+

zynq_ultra_ps_e_0

zynq ultraScale + MPSoC

rst_ps8_0_96M

Constant

dout[0:0]

xlconstant_0

Processor system reset

M_AXI_HPM0_FPD +
M_AXI_HPM0_LPD +

GPIO_0 +
emio_enet0_tsu_timer_cmp_val

emio_enet0_enet_tsu_timer_cnt[93:0]
pl_resetn0

pl_clk0

maxihpm0_fpd_aclk
maxihpm0_lpd_aclk
emio_enet0_tsu_inc_ctrl[1:0]
pl_ps_irq0[0:0]

slowest_sync_clk
ext_reset_in
aux_reset_in
mb_debug_sys_rst
dcm_locked

mb_reset
bus_struct_reset[0:0]
peripheral_reset[0:0]

interconnect_aresetn[0:0]
peripheral_aresetn[0:0]

AXI Interconnect

AXI IIC

SYSCTLR_I2C

SYSCTLR_I2C

EMIO_GPIO

IIC +
llc2intc_irpt

gpo[0:0]

+ S_AXI
s_axi_aclk
s_axi_aresetn

ps8_0_axi_periph

M00_AXI +

+
+ S00_AXI
+ S01_AXI
ACLK
ARESETN
S00_ACLK
S00_ARESETN
M00_ACLK
M00_ARESETN
S01_ACLK
S01_ARESETN

FIGURE 3
Front end of the hardware design in
Vivado

CIRCUIT CELLAR • JANUARY 2020 #35436

Consumer and commercial drones pose a number of tricky design challenges.
Technology vendors have made things somewhat easier over the past year,
offering a variety of system-oriented platforms and tools—even including
complete development kits.

System Solutions Accelerate
Drone Development
Fast Track
to Flight

T he development of consumer and
commercial drones continues
to be a dynamic segment of the
embedded systems industry.

Faced with severe limits on size, weight and
power, drone designers need to be careful with
how they choose each and every electronic
component. Meanwhile, huge opportunities
abound for drone platforms that can pack in
high levels of compute processing along with
advanced cameras and sensor suites.

Fortunately, drone developers don’t have
to start from scratch. A rich set of resources
are available including board-level solutions,
payload subsystems and development kits and
even complete reference designs. Over the last
12 months, new solutions along those lines
continue to roll out from a variety of vendors
ranging from processor companies to drone
vendors themselves.

SYSTEM MODULE SOLUTION
Exemplifying those trends, in October

Intrinsyc announced its tiny Open-Q uSOM
module. The new Open-Q 845 uSOM is a 50mm
× 25mm mini-module is based on Qualcomm’s
Snapdragon 845 SoC (Figure 1). It’s supported

by a Mini-ITX form-factor Open-Q 845 μSOM
development kit. The module is designed for
advanced robotics, drones and embedded
IoT devices requiring the latest on-device AI
powers, says Intrinsyc. It runs the Android 9
Pie OS, with a promise to upgrade to the latest
Android 10 by 2Q 2020. The module is also
supported by a Yocto-based Linux image that
is similarly based on Linux kernel 4.9.

Aside from the Open-Q 845 HDK for mobile
phones released in 2018, the 8-core, 10nm-
fabricated Snapdragon 845 SoC has appeared
on the Robotics RB3 Platform from Qualcomm
and Thundercomm, which is built around
a DragonBoard 845c SBC that has yet to be
released separately. More on the RB3 later in
this article.

The Open-Q 845 uSOM module ships with
4GB or 6GB dual-channel LPDDR4x SDRAM at
1866MHz, as well as 32GB or 64GB UFS flash.
There’s also a 2.4/5GHz 802.11a/b/g/n/ac wotj
2×2 MU-MIMO (Qualcomm WCN3990) with a
5GHz external PA and U.FL antenna connector.
A Bluetooth 5.x radio is also included. Media
interfaces include DisplayPort v1.4 with USB
Type-C support for up to 4K60 and 2x 4-lane
MIPI-DSI D-PHY 1.2 at up to 3840x2400 10-bit

By Jeff Child,
Editor-in-ChiefSP

EC
IA

L
FE

AT
U

RE

circuitcellar.com 37
SPECIAL FEATU

RE

60fps. Camera interfaces include 3x 4-lane
MIPI-CSI and a separate 2-lane MIPI-CSI link.

The development kit for the Open-Q 845
μSOM is built around a 170m × 170mm carrier
board. There’s also an optional smartphone
sized touchscreen and 13-Mpixel camera. The
Open-Q 845 μSOM Development Kit carrier
runs on 12V/3A power via an included adapter
and can also operate on a user-supplied Li-Ion
battery.

The board provides a USB 3.1 Type-C
port with DP and USB support and there
are connectors for all the MIPI-DSI and -CSI
interfaces mentioned above. Audio features
include the WCD9340 codec, a 3.5mm audio
combo jack and analog and digital audio I/O
headers. The carrier has a microSD slot, a
USB 3.1 host port and a PCIe Gen3 interface.
There are also headers for UART, I2C, SPI and
configurable GPIOs. Dual PCB antennas are
also available.

SMALLEST BREADCRUMB
Among the most compelling advances

in commercial drone usage has been the
integration of mesh-networks to enable drone
communications. Rajant offers a technology
solution along those lines. Using a combination
of wireless network nodes that Rajant calls
Breadcrumbs and its InstaMesh networking
software, Rajant’s Kinetic Mesh networks
employ any-node to any-node capabilities
to continuously and instantaneously route
data via the best available traffic path and
frequency—for any number of nodes, all with
extremely low overhead. Rajant BreadCrumbs
can communicate with any Wi-Fi or Ethernet-
connected device to deliver low-latency, high-
throughput data, voice and video applications
across the meshed, self-healing network.

In November, Rajant released its latest
BreadCrumb product, the DX2. The DX2 is
Rajant’s smallest and lightest BreadCrumb,
forming a mesh network when used in
conjunction with its LX5, ME4 and ES1 models,
which operate using Rajant’s proprietary
InstaMesh protocol (Figure 2). With one
transceiver and two external antennas, DX2 is
lightweight and has low power consumption
depending on transceiver configuration.
Encased in a magnesium enclosure, the
DX2 weighs 123g making it well suited for
lightweight autonomous vehicles, drones and
small robots. This very low payload, combined
with a pocket-size footprint, makes it a good
solution for varying degrees of autonomy and
mobility operations as well as high bandwidth

communication and data transmission,
according to Rajant.

The DX2 has integrated Wi-Fi access point
service for compatibility with millions of
commercial off-the-shelf (COTS) client devices,
such as laptops, tablets, smartphones, IP
cameras, sensors and other IP devices.
Additionally, a hidden USB connector, to be
used for GPS or Tactical Radio over IP (TRoIP),
lies behind a rear black rubber plug.

In compatibility with all other Rajant
nodes, the DX2 forms a wireless Kinetic
Mesh network that maintains continuous
connectivity unlike traditional break-before-
make infrastructures, says Rajant. Like
all other Rajant BreadCrumbs, the DX2
delivers low-latency, high-throughput, fail-
proof connectivity for data, voice and video
applications, including drone swarms. The
DX2 is available in two models, the DX2-24
with 2.4 GHz and DX2-50 with 5.0 GHz.

HIGH-BANDWIDTH COMMS
Focusing on the high-bandwidth side

of drone data transfer, Silvus Technologies
provides communications solutions for high
bandwidth video, C2, health and telemetry

FIGURE 2
The DX2 is Rajant’s smallest and
lightest BreadCrumb, forming a mesh
network when used in conjunction with
its LX5, ME4 and ES1 models, which
operate using Rajant’s proprietary
InstaMesh protocol.

FIGURE 1
Based on Qualcomm’s Snapdragon
845 SoC, the tiny Open-Q uSOM
is a 50mm x 25mm mini-module
designed for advanced robotics drones
and embedded IoT devices requiring
the latest on-device AI powers.

CIRCUIT CELLAR • JANUARY 2020 #35438
SP

EC
IA

L
FE

AT
U

RE

data. In September, Silvus announced
a partnership with Silent Falcon UAS
Technologies, manufacturer of the Silent
Falcon, a solar electric, fixed wing, long
endurance, long range drone (Figure 3). The
Silent Falcon drone integrates Silvus’ advanced
technology MIMO MANET Streamcaster
communications systems in its drone systems
including its new SF ATAK Field Observer Kit.

Introduced in 2019, the most recent
models of the Streamcaster radios are Silvus’
Enhanced 4000 series. The new radios provide
a user-customizable multilocation switch for
loading presets and zeroizing crypto. They
have improved connectors and tie-down points
for weather caps and feature IP68 enclosures
(submersible to 20m). Smart battery
technology provides % monitoring. The units
also feature FIPS140-2 Level 2 encryption and
MANET Interference Avoidance (MAN-IA).

The SC4200E model in the Enhanced series
is a 2×2 MIMO radio. It is well suited for use
in portable and drone applications where size,

weight, power or cost are key. The unit provides
up to 4W of output power (up to 8W effective
performance thanks to TX Beamforming). The
SC4200E is available in three form factors to
suit a variety of applications: Rugged “brick”
(externally powered), rugged handheld (with
twist-lock battery connector) and non-rugged
OEM (for embedding in custom products and
sub-systems).

Silent Falcon has previously used the Silvus
MIMO MANET communications systems for a
wide variety of drone long range commercial
applications in oil and gas, pipeline, electric
power transmission, mapping and surveying
markets. It has also been successfully
deployed in intelligence, surveillance and
reconnaissance; search and rescue and long-
range border patrol missions. It’s also been
used in extreme environmental conditions
while assisting the US Department of Interior
in wildfire fighting operations.

Silent Falcon recently introduced its three
radio SF TriAntenna Ground Control Station,
powered by Silvus Streamcaster components.
The system increases the reliability,
connectivity and bandwidth of the Silent Falcon
system. The comm system's capabilities have
been further enhanced by the addition of the
SF ATAK Field Observer Kit, a small, portable
kit that provides live streaming videos with
map overlays on tablets and smartphones to
operators on the ground who need this vital
information in real time.

SNAPS AND MANIFOLD 2
Drones like DJI’s Phantom and Matrice

models embed flight controllers that run
a proprietary operating system. But, in
2015, the company announced a Manifold
development computer for its Matrice 100
drone that runs Ubuntu on a Nvidia Tegra
K1. In June 2019, DJI unveiled a more
powerful Manifold 2 computer with a choice
of Nvidia Jetson TX2 and Intel Core i7-8550U
processors (Figure 4). Canonical followed
up by announcing that, not only will Ubuntu
16.04 return as the pre-installed OS for the
device, but that it will include support for
Ubuntu snaps application packages.

Ubuntu snaps are containerized software
packages that work interchangeably across
embedded, desktop and cloud-based Ubuntu
distributions. Found on embedded Linux
devices ranging from LimeSDR boards to
Orange Pi PCs, they offer built-in security,
automated updates and transaction rollback
support. They also come with an online

FIGURE 3
The Silent Falcon—a solar
electric, fixed-wing drone—
integrates Silvus Technologies’
MIMO MANET Streamcaster
communications systems in its
drone systems including its new
SF ATAK Field Observer Kit.

For detailed article references and additional resources go to:

www.circuitcellar.com/article-materials

RESOURCES
Aerotenna | www.aerotenna.com

Intrinsyc Technologies | www.intrinsyc.com

Nvidia | www.nvidia.com

NXP Semiconductors | www.nxp.com

Qualcomm | www.qualcomm.com

Rajant | www.rajant.com

Silvus Technologies | www.silvustechnologies.com

http://www.circuitcellar.com/article-materials
http://www.aerotenna.com
http://www.intrinsyc.com
http://www.nvidia.com
http://www.nxp.com
http://www.qualcomm.com
http://www.rajant.com
http://www.silvustechnologies.com

circuitcellar.com 39
SPECIAL FEATU

RE

FIGURE 4
The Manifold 2 will be the first drone
system to offer snaps, which will
enable its functionality to be altered,
updated and expanded over time.

marketplace for sharing and selling different
snaps applications. The Manifold 2 will be
the first drone system to offer snaps, which
will enable its functionality to be “altered,
updated and expanded over time,” according
to Canonical. Snaps will make it easier to
manage large fleets of drones, as well as
develop vertical applications that can be
shared and modified for other use cases.

Ubuntu offers DJI drone users support
for Linux, Nvidia CUDA, OpenCV and ROS
(Robot Operating System). The Ubuntu-driven
Manifold 2 is well suited for the research and
development of professional applications
and can access flight data and perform
intelligent control and data analysis. The
Manifold 2 can be integrated on DJI enterprise
drones including the Matrice 210 series and
Matrice 600 series, as well as its separately
available N3 Flight Controller and A3 Flight
Controller. The computer can process complex
image data onboard the drone and get results
immediately and can program drones to fly
autonomously while identifying objects and
avoiding obstacles, says DJI.

The Manifold 2 can act either as a
companion computer or as a control computer
over the flight controller. The system can be
integrated into the drone’s internal systems
and sensors using DJI’s software development
kit. The Manifold 2 offers users a choice of
two processing platforms, both of which run
Ubuntu 16.04 with snaps. The first is the “GPU
Model” (Manifold2-G) with Nvidia’s Jetson
TX2, which offers a more powerful, hexa-core
update to the Manifold 1’s Nvidia Tegra K1.

DJI lists different applications for the two
models. The GPU Model is said to be designed
for AI, object recognition, motion analysis
and image processing. The CPU Model is for

autonomous flight, real-time data analysis,
ground station connectivity and robotics.
Both Manifold 2 versions have a -25°C to 45°C
tolerant, 91mm × 61mm × 35mm enclosure,
down from 110mm × 110mm × 26mm on the
Manifold 1. Despite the smaller footprint, the
new models are heavier than the under 200g
original. The Jetson TX2-based GPU model
weighs in at 230g while the Coffee Lake-based
CPU Model is 205g.

COMPLETE DRONE DEV KIT
We’ve discussed several drone

development kits in Circuit Cellar in recent
years. These kinds of kits provide all the
components needed to get a drone platform
up and running. An example is the Smart
Drone Development Platform from Aerotenna.
The kit is equipped with microwave radar
collision-avoidance sensors, a radar altimeter

FIGURE 5
The Smart Drone Development
Platform from Aerotenna is equipped
with microwave radar collision-
avoidance sensors, a radar altimeter
and an FPGA-based flight controller.

CIRCUIT CELLAR • JANUARY 2020 #35440
SP

EC
IA

L
FE

AT
U

RE

and an FPGA-based flight controller (Figure 5).
The kit’s OcPoC Zynq Mini Flight Controller

is an FPGA-based flight controller capable of
triple redundant GPS, compass and IMU. The
unit is pre-loaded with the PX4 and Ardupilot
flight control stacks. PX4 is the largest
commercially deployed open source flight
stack and supports contemporary airframe
architectures including VTOL aircraft,
multicopter and rover profile. The μLanding
radar altimeter can perform in all weather
conditions and challenging terrains and has
maximum altitude range of 150m with and
altitude accuracy of 2cm. Its update rate is
766Hz (every 1.31ms).

The development kit also includes three
μSharp-Patch collision avoidance radar
sensors. These sensors scan the front, left
and right side of the vehicle, detecting and
locating obstacles on the horizon quickly
and reliably and a maximum range of 120m.
A pre-assembled quadcopter, carbon fiber
airframe is provided in the kit. It includes
GPS/compass, foldable arms for ease of
transport and modular component design for
simple maintenance and repair. It can do flight
times up to 50 minutes (16000mAh battery,
no payload). Total weight with airframe, pre-
assembled flight controller and sensors is
1.9kg. Maximum takeoff weight with battery
is 4.0kg.

DEV KIT RUNS ROS
Among the drone development kits

introduced in 2019 was the Robotics RB3 Platform
co-developed by Qualcomm and Thundercomm
(Figure 6). The platform includes an octa-core
Snapdragon 845 via a new “DragonBoard 845c”
96Boards SBC and tracking cameras. While
the platform appears to be marketed toward
terrestrial robots, Qualcomm told us that it's
also suited for developing drones.

The RB3 platform integrates key capabilities
such as high-performance heterogeneous
computing, 4G/LTE connectivity including
CBRS support for private LTE networks, a
Qualcomm AI Engine for on-device machine
learning and computer vision, hi-fidelity
sensor processing for perception, odometry
for localization, mapping and navigation,
advanced security and Wi-Fi connectivity.
Support is also planned for 5G connectivity.

The platform currently supports Linux and
Robot Operating System (ROS), while also
including support for the Qualcomm Neural
Processing software development kit (SDK)
for advanced on-device AI, the Qualcomm
Computer Vision Suite, the Qualcomm Hexagon
DSP SDK and Amazon’s AWS RoboMaker, with
plans for Ubuntu Linux support.

The platform’s hardware development
kit contains the new purpose-built robotics-
focused DragonBoard 845c development
board, based on the Qualcomm SDA/SDM845
SoC and compliant with the 96Boards open
hardware specification to support a broad
range of mezzanine-board expansions.
Optional elements for the kit include a
connectivity board; an image camera for
superb hi-res photo, 4K video capture and
AI-assisted detection and recognition of
people and objects; a tracking camera for
path planning and obstacle avoidance using
visual simultaneous localization and mapping
(vSLAM); a stereo camera for navigation; and a
time-of-flight camera for people, gesture and
object detection even in low light conditions.

KIT FOR DRONE CHALLENGE
There’s been a history of processor vendors

providing drone development kits—Intel and
Qualcomm, for example. NXP Semiconductors
for its part, has put a twist on this trend by
making a drone development kit part of an
annual drone development contest. Called
the HoverGames Challenges, participants use
NXP’s HoverGames drone development kit.
The hardware and software of the developer
kit is open, flexible and modular and includes

FIGURE 6
The RB3 platform includes an octa-core Snapdragon 845 via a “DragonBoard 845c” 96Boards SBC and
tracking cameras. It integrates key capabilities such as high-performance heterogeneous computing, 4G/
LTE connectivity including CBRS support for private LTE networks, advanced security and Wi-Fi connectivity.

circuitcellar.com 41
SPECIAL FEATU

RE

professional, automotive and industrial-grade
components enabled by the PX4 flight stack.

The HoverGames KIT-HGDRONEK66 kit
(Figure 7) provides the mechanical and other
components needed to evaluate the RDDRONE-
FMUK66 flight management unit and adds BLDC
motor control capabilities and a mechanical
platform, on which it can be mounted. This
developer kit may be used as part of and
contains the components needed for the
HoverGames coding challenges. NXP points out
that this is a professional developer kit, not a
complete functional system and includes no
software. The flight management unit (FMU) is
supported by the business-friendly open source
PX4 flight stack. In addition, a separate suitable
hobby-type LiPo battery and country-specific
telemetry radio will be required.

When assembled, the frame has
appropriate the additional space necessary
to mount other components such as an

adapter for Rapid IoT, NXP Freedom boards,
or a companion computer such as i.MX 8M
Mini to be used as a vision processor running
Linux and ROS. The HoverGames drone and
rover development platform is very flexible,
fully open for development of robotics,
control algorithms, security networking and
communications protocols and can include
another add-on component, companion
computer, software or associated solutions.

Today’s quadcopter style consumer and
commercial drones couldn’t exist without
today’s high levels of chip integration. As
developers push for more autonomous
operations and AI aboard drones, they’ll
continue to look toward SoC-based solutions
to offer improved functionally without added
size and weight. Fortunately, technologies
and solutions such as those covered in this
article can help drone system developers to
get to market—and to flight—faster.

FIGURE 7
Top: The HoverGames KIT-
HGDRONEK66 kit provides the
mechanical and other components
needed to evaluate the RDDRONE-
FMUK66 flight management unit and
adds BLDC motor control capabilities
and a mechanical platform, which
it can be mounted on. Bottom: an
assembled HoverGames RDRONE
drone.

CIRCUIT CELLAR • JANUARY 2020 #35442
TE

CH
 S

PO
TL

IG
HT

Analog ICs Boast Battery
Management Innovations

By Jeff Child,
Editor-in-Chief

Perfecting
Power

Boosting battery life and efficiency is a major goal for many embedded systems. Analog IC vendors
are smoothing the way with innovative chips for monitoring, controlling and charging batteries.

FIGURE 1
The MAX17301 and the MAX17311 fuel gauge ICs offer configurable settings for battery safety and allow fine tuning of voltage and
current thresholds based on various temperature zones.

M anaging battery power is a
critical function for all sorts
of battery-powered systems,
including power tools, wearable

electronics, IoT edge devices and electric
vehicles. Innovations in power management
ICs, fuel-gauge ICs, battery monitoring ICs
and more are helping to provide improved
power efficiency for diverse applications.

There are many facets to managing
batteries in embedded systems. To meet
the ever-present goal of extending battery
lifetimes and battery efficiencies requires
solutions for monitoring and charging
batteries, as well as efficient power conversion
devices. Over the past 12 months, analog ICs
vendors have rolled out several innovative
solutions both for portable, battery-powered
systems and for the particular needs for
electric vehicle battery management.

FUEL GAUGE ICS
Along those lines, in August Maxim

Integrated announced fuel gauge ICs that
company claims offer the most configurable
settings for battery safety in the industry
and uniquely allow fine tuning of voltage

and current thresholds based on various
temperature zones. The newest 1-cell, pack-
side ICs in this portfolio are the MAX17301
and the MAX17311 (Figure 1). These ICs also
offer a secondary protection scheme in case
the primary protection fails. This secondary
protection scheme permanently disables the
battery by overriding a secondary protector
or blowing a fuse in severe fault conditions.

All ICs in the family are equipped with
Maxim’s patented ModelGauge m5 EZ
algorithm that delivers highest state-of-
charge (SOC) accuracy that on average
offers 40% better accuracy than competitive
offerings and eliminates the need for battery
characterization. These fuel gauges also offer
the industry’s lowest quiescent current (IQ)—
up to 80% lower than the nearest competitor
according to Maxim, and feature SHA-256
authentication to safeguard the systems from
counterfeit batteries.

Conventional battery protectors monitor
voltage and current, and in some cases
include temperature monitoring, says Maxim.
These options make the system vulnerable to
unexpected crashes because battery SOC isn’t
factored in when triggering an undervoltage

circuitcellar.com 43
TECH SPO

TLIG
HT

cut-off decision. The market lacks a solution
that allows deeper configuration of voltage
or current thresholds based on multiple
temperature environments.

Maxim's devices provide advanced battery
protection to ensure safe charging and
discharging in a wide range of applications with
2-level Li-ion protector control for abnormal
voltage, current and temperature conditions.
The ICs protect against counterfeiting and
cloning with SHA-256 authentication and
provide unique as well as dynamic keys for
every battery.

To enable high accuracy, the chips offer
cycle+ age forecasting that provides easy-to-
understand prediction of remaining battery
life for battery replacement planning or to
control fast-charging. Battery life logging
stores the history of operating conditions
experienced by the pack over its lifetime.
Support for long product shelf-life and
runtime is served by an operating IQ of 24µA
active/18µA low power with protector FETs
"on" and 7µA with protector FETs "off."

BATTERY CHARGER IC
With its focus on the charging side of

battery management, in September Texas
Instruments (TI) introduced a switching
battery charger IC that supports a
termination current of 20mA. Compared to
competing devices, which typically support a
termination current higher than 60mA, TI’s
BQ25619 enables 7% higher battery capacity
and longer runtime, says TI. The BQ25619
charger also delivers three-in-one boost
converter integration and ultra-fast charging,
offering 95% efficiency at a 4.6V and 0.5A
output (Figure 2). Additionally, with the
industry’s lowest quiescent current, the new
charger can double the shelf life of ready-to-
use electronics.

The BQ25619 charger is designed to help
engineers design more efficiently for small
medical and personal electronics applications
such as hearing aids, earbuds and wireless
charging cases, IP network cameras, patient
monitoring devices and personal care
applications.

An ultra-low termination current of 20mA
increases battery capacity and runtime by up
to 7%. The BQ25619’s settable top-off timer
further increases run time, enabling users
to charge their devices less frequently. The
BQ25619 reduces battery leakage down to 6µA
in ship mode, which conserves battery energy
to double the shelf life for the device. While in
battery-only operation, the device consumes
only 10µA, to support standby systems.

The BQ25619 includes integrated charge,
boost converter and voltage protection to
support efficient design for space-constrained

applications and eliminate the external
inductor required by previous-generation
charger ICs. Due to its integrated bidirectional
buck or boost topology, the BQ25619’s
charging and discharging capabilities require
just a single power device. The device is
offered in a 24-pin wafer quad flatpack no-
lead (WQFN) package. The 30-pin BQ25618,
with similar features, is offered in a smaller
wafer chip-scale package (WCSP).

WIRELESS CHARGING IC
Many wearable devices aren’t suited to be

powered by replaceable batteries. As a result,
they typically need to be recharged. Wireless
(cordless) battery charging is beginning to
take hold as a solution. Feeding such needs,
Analog Devices offers its LTC4126 as an
expansion of its offerings in wireless battery
charging. The LTC4126 combines a wireless
powered battery charger for Li-Ion cells with
a high efficiency multi-mode charge pump
DC-DC converter, providing a regulated 1.2V
output at up to 60 mA (Figure 3).

Charging with the LTC4126 allows for
a completely sealed end product without
wires or connectors and eliminates the need
to constantly replace non-rechargeable
(primary) batteries. The efficient 1.2V
charge pump output features pushbutton on/
off control and can directly power the end
product’s ASIC. This greatly simplifies the
system solution and reduces the number of
necessary external components. The device is
ideal for space-constrained low power Li-Ion
cell powered wearables such as hearing aids,
medical smart patches, wireless headsets and
IoT devices.

FIGURE 2
The BQ25619 charger delivers three-in-one boost converter integration and ultra-fast charging, offering 95%
efficiency at a 4.6V and 0.5A output.

CIRCUIT CELLAR • JANUARY 2020 #35444
TE

CH
 S

PO
TL

IG
HT

The LTC4126, with its input power
management circuitry, rectifies AC power
from a wireless power receiver coil and
generates a 2.7V to 5.5V input rail to power
a full-featured constant-current/constant-
voltage battery charger. Features of the
battery charger include a pin selectable
charge voltage of 4.2V or 4.35V, 7.5mA

charge current, automatic recharge, battery
temperature monitoring via an NTC pin, and
an onboard 6-hour safety charge termination
timer.

Low-battery protection disconnects the
battery from all loads when the battery voltage
is below 3.0V. The LTC4126’s charge pump
switching frequency is set to 50kHz/75kHz to
keep switching noise out of the audible range,
ideal for audio related applications such as
hearing aids and wireless headsets. The IC is
housed in a compact, low profile (0.74 mm)
12-lead 2mm × 2mm LQFN package. The
device is guaranteed for operation from –20°C
to 85°C in E-grade.

SOLUTION FOR 14 Li-IOn CELLS
Electric and hybrid vehicles have very

special requirements when it comes to
managing their battery subsystems. Feeding
those needs, Renesas Electronics in August
announced its fourth-generation Li-Ion
battery management IC that offers high
lifetime accuracy. The ISL78714 provides
accurate cell voltage and temperature
monitoring, along with cell balancing and
extensive system diagnostics to protect 14-
cell Li-Ion battery packs while maximizing
driving time and range for hybrid and electric
vehicles (Figure 4).

The ISL78714 monitors and balances up to
14 series-connected cells with ±2mV accuracy
across automotive temperature ranges,
letting system designers make informed
decisions based on absolute voltage levels.
The ISL78714 includes a precision 14-bit
analog-to-digital converter and associated
data acquisition circuitry. The device also
offers up to six external temperature inputs
(two available from GPIOs) and includes fault
detection and diagnostics for all key internal
functions.

The ISL78714 meets the stringent
reliability and performance requirements of
battery pack systems for all electric vehicle
variants, with safety features, enabling
automotive manufacturers to achieve the
ISO 26262 automotive safety integrity
level (ASIL D). In addition, the ISL78714
monitors and reads back over/under voltage,
temperature, open wire conditions, and fault
status for 112 cells in less than 10ms, or
70 cells in 6.5ms.

Multiple ISL78714s can be connected
together via a proprietary daisy chain that
supports systems up to 420 cells (30 ICs)
that provide industry-leading transient and
EMC/EMI immunity, exceeding automotive
requirements. The ISL78714’s daisy-chain
architecture uses low-cost capacitive or
transformer isolation, or a combination of
both, with twisted pair wiring to stack multiple

RESOURCES
Analog Devices | www.analog.com

Maxim Integrated | www.maximintegrated.com

Renesas Electronics | www.renesas.com

Texas Instruments | www.ti.com

FIGURE 3
The LTC4126 combines a wireless powered battery charger for Li-Ion cells with a high efficiency multi-mode
charge pump DC-DC converter, providing a regulated 1.2V output at up to 60mA.

FIGURE 4
The ISL78714 provides accurate cell voltage and temperature monitoring, along with cell balancing and
extensive system diagnostics to protect 14-cell Li-ion battery packs while maximizing driving time and range
for hybrid and electric vehicles.

http://www.analog.com
http://www.maximintegrated.com
http://www.renesas.com
http://www.ti.com

circuitcellar.com 45
TECH SPO

TLIG
HT

battery packs together while protecting
against hot plug and high voltage transients.
A watchdog timer automatically shuts down a
daisy-chained IC if communication is lost with
the master MCU. Mass production quantities
of the ISL78714 Li-ion battery management IC
are available now in a 64-lead TQFP package.

ELECTRIC VEHICLE DESIGN WIN
In December, Analog Devices (ADI)

announced that Rimac Automobili is planning
to incorporate ADI’s precision battery
management system (BMS) ICs into Rimac’s
BMS. ADI’s technology provides Rimac’s BMS
with the ability to extract maximum energy
and capacity out of its batteries by calculating
reliable SOC and other battery parameters at
any given time, according to ADI.

The Rimac C_Two is a fully electric hypercar
capable of speeds of up to 258 miles per hour.
With 1,914 horsepower under the hood, the
C_Two accelerates 0 to 60 mph in 1.85 seconds
and 0 to 186 mph in 11.8 seconds. To
support these high-performance outputs, the
Rimac team designs and engineers superior
underlying technologies, such as electric
drivetrain and battery packs.

BMS technology acts as the “brains”
behind battery packs by managing the
output, charging and discharging as well as
providing precision measurements during
vehicle operation. A BMS also provides vital
safeguards to protect the battery from
damage. A battery pack consists of groups of
individual battery cells that work seamlessly
together to deliver maximum power output to
the car. If the cells go out of balance, the cells
can get stressed leading to premature charge
termination and a reduction in the battery’s
overall lifetime. ADI’s battery management
ICs deliver the highly accurate measurements,
resulting in safer vehicle operation and
maximizing vehicle range per charge.

ASIL-D COMPLIANT IC
Safety standards compliance is a key concern

in electric vehicles. Automotive designers can
now achieve ASIL-D compliance for automotive
applications using just a single chip for a safer,
more cost-effective battery management
system with the MAX17853 battery monitor IC
from Maxim Integrated (Figure 5). Targeting
mid-to-large cell count configurations for
automotive applications, such as battery packs
for electric and hybrid vehicles, MAX17853’s
flexible architecture called Flexpack enables
engineers to rapidly make changes to their
module configurations to quickly respond to
market demands.

Achieving safety compliance in automotive
applications can require adding redundant
components to the system. Maxim claims that

the MAX17853 is the only ASIL-D-compliant
IC for mid-to-large cell count configurations,
enabling engineers to create a system that
meets the highest level of safety for voltage,
temperature and communication. Also
contributing to higher safety is the device’s
advanced battery cell balancing system, which
automatically balances each cell by time and
voltage to minimize risk of overcharging.

System developers can achieve all this
without adding extra components such as
redundant comparators to help achieve
smaller form factors, says Maxim. In addition,
the MAX17853 reduces system bills of
materials (BOM) cost by up to 35% compared
to competitive solutions to allow the customer
to achieve lower overall cost for their BMS
solution.

Flexibility is also important because
engineers typically must design and qualify
separate boards and BOMs for each different
module configuration. The MAX17853 is the
industry’s only IC supporting multiple channel
configurations (8 to 14 cells) with one board.
This enables engineers to reduce design time
by up to 50% through reduced validation and
qualification time. For example, they can cut
their development time and qualification
efforts in half by using the same board for 8s
and 14s modules.

FIGURE 5
Maxim claims that the MAX17853 is the only ASIL-D-compliant IC for mid-to-large cell count configurations,
enabling engineers to create a system that meets the highest level of safety for voltage, temperature and
communication.

By Jeff Child,
Editor-in-Chief

CIRCUIT CELLAR • JANUARY 2020 #35446
D

AT
AS

HE
ET

COM Express has emerged as one of the most popular standards-based form factors for embedded
systems. COM Express modules serve as a complete computing core that can be upgraded when
needed, while the application-specific I/O on the baseboard can remain the same.

Datasheet:

COM Express Boards
Compact Performance

C OM Express has all the aspects
that make a successful embedded
board-level form factor: a large
ecosystem of vendors that make

COM Express boards, an active and innovative
standards organization in the form of PICMG
(PCI Industrial Computer Manufacturers Group)
and a wide application base of engineers hungry
to embedded the technology into their systems.
As ever more powerful processors emerge,
embedded computing modules like COM
Express boards will only get more powerful.
The approach of a two-board solution—a COM
Express module and an I/O baseboard—has
caught on while slot-card system architectures
have begun to lose favor. According to multiple
research reports, the computer-on-module
(COM) market is expanding rapidly and is
expected to reach over $1 billion by 2022.

In November, the PICMG COM-HPC
technical subcommittee approved the pinout
of its high-performance Computer-on-Module
specification. The new COM-HPC standard
is now entering the home stretch for the
ratification of version 1.0 of the specification,
which is scheduled for the first half of 2020.
COM manufacturers and carrier board designers
who are active in the COM-HPC workgroup can

now embark on their first edge computing
designs based on this pre-approved data, with
the expectation to bring them to market in time
with the launch of new high-end embedded
processor generations from Intel and AMD
in 2020. PICMG says the new COM-HPC is in
parallel to existing COM Express efforts. This
effort is intended to complement rather than be
a replacement for COM Express.

COM Express is widely used in industrial
automation, defense/aerospace, gaming,
medical, transportation, IoT and other
applications. Here's an example of a medical
application using COM Express: In order to
optimize emergency patient care, the Swiss
IT company Imtmedical, a manufacturer of
solutions in medical ventilation technology,
used COM Express technology from Kontron for
a ventilation system they built in partnership
with IMT AG. The resulting bellavista 950 and
1000 products, released in 2013, use a COM
Express module from Kontron as their core
computing elements (Figure 1).

The representative set of COM Express
board in this section are limited to products
announced in the last 12 months. In the digital
version of this article, you can access links to
the actual datasheets of each product.

FIGURE 1
Imtmedical’s bellavista 950 and 1000 ventilator products, released in 2013,
use a COM Express module from Kontron as their core computing elements.

circuitcellar.com 47
D

ATASHEET

Type 6 COMe Board Targets
Edge Computing

Aaeon’s COM-CFHB6 is built to the
COM Express Type 6 form factor. It
features a wide range of processors
from the Intel Celeron to Intel Xeon, and
the 8th and 9th Generation Intel Core
processors (Coffee Lake H/Coffee Lake
Refresh). The COM-CFHB6 supports low
power 25W processors, well suited for
mobile applications, up to 45W 6-core
Xeon server CPUs.

• Intel Coffee Lake-H 8th / 9th Ge i3/
i5/i7/ Xeon-E processors

• 3x SODIMM DDR4 2666 memory up
to 48GB, ECC support (by SKU, with
CM246 PCH)

• Intel I219 Gbit Ethernet
• VGA, 18/24-bit 2ch LVDS or 4-lane

eDP, DDI up to 3
• High definition audio interface
• SATA x4, USB2.0 x8, USB 3.0 x4
• PCI-Express [x1] x8, PCI-Express

[x16] x1
• GPIO x 8, SMbus, I2C, LPC
• COM Express Basic size, pin-out

Type 6, 125mm x 95mm

AAEON
www.aaeon.com

COMe Board Serves up
15W Quad-Core Processors

ADLINK Technology’s cExpress-WL
modules feature the 8th generation Intel
Core and Celeron processors (formerly
codenamed Whiskey Lake-U) with up
to 4 cores and up to 64GB memory
capacity. The cExpress-WL is suited for
applications such as data acquisition
and analysis, image processing, and 4K
video transcoding and streaming at the
edge.

• 8th gen quad/dual-core Intel Core
processors

• Up to 64GB dual channel non-ECC
DDR4 at 2133/2400MHz

• 2x DDI channels, 1x LVDS, one opt.
VGA, supports up to 3 independent
displays

• Up to eight PCIe lanes, GbE
• Up to 3x SATA 6 Gb/s, four USB 3.1

Gen2 and four USB 2.0
• Supports Smart Embedded

Management Agent (SEMA) functions
• Operating temperature: -40°C to

+85°C (optional)

ADLINK Technology
www.adlinktech.com

COMe Type 6 Card Sports
Intel H-Series Processor

Advantech’s high-end SOM-5899
series COM Express Type 6 Module is
designed with 8th and 9th Gen Intel
Core H-series processors. Compared
with previous generations, the SOM-
5899 is enhanced with six cores
for better multithreaded compute-
intensive application performance.

• COM Express R3.0 Type 6 Basic
module

• 8th and 9th Gen Intel Core Xeon and
i7/i5/i3/Celeron processors

• 2 to 6 Core CPU with up to 96GB
Non-ECC memory and up to 48GB
ECC memory

• 3x DDI 4k resolution
• 4x USB3.1 Gen 2 (10Gbps) / PEG x16

and 8x PCIe Gen3 (8Gbps)
• 4x SATA III ports and supports AHCI

and RAID mode
• Supports Advantech iManager,

WISE-PaaS/DeviceOn

Advantech
www.advantech.com

DATASHEET URLS:

AAEON www.aaeon.com/en/p/com-express-modules-com-cfhb6

ADLINK Technology www.adlinktech.com/Products/Computer_on_Modules/COMExpressType6Compact/cExpress-WL

Advantech https://advdownload.advantech.com/productfile/PIS/SOM-5899/file/SOM-5899_5899R_DS(120219)20191202190722.pdf

http://www.aaeon.com
http://www.adlinktech.com
http://www.advantech.com
http://www.aaeon.com/en/p/com-express-modules-com-cfhb6
http://www.adlinktech.com/Products/Computer_on_Modules/COMExpressType6Compact/cExpress-WL
https://advdownload.advantech.com/productfile/PIS/SOM-5899/file/SOM-5899_5899R_DS(120219)20191202190722.pdf

CIRCUIT CELLAR • JANUARY 2020 #35448
D

AT
AS

HE
ET Type 6 COMe Module Has

Extended Temp Support

Eurotech’s CPU-162-23 brings the
computational performance and RAM
capacity of a server to the field. It
supports extended temperature range
(-40 to +85°C). The soldered-down
CPUs and ECC memory further increase
reliability in demanding applications.
The board provides full integration
with Eurotech IoT Edge Framework
Everyware Software Framework (ESF),
providing native connectivity with many
IoT Cloud services

• HPEC and micro server ready
• Intel Pentium and Xeon D-1500 CPUs
• Up to four SO-DIMM sockets for a

total of 64GB DDR4 with or without
ECC

• 2x 10Gbit Ethernet
• Up to x32 PCIe lanes
• 2x SATA 3.0 ports, 4x USB 3.0 and 4x

USB 2.0 ports
• Rugged and fanless

Eurotech
www.eurotech.com

COM Express Card Offers
14 Different Processor Options

The conga-TS370 Type 6 COM
Express board from Congatec supports
14 processor variants. In July, the
company added ten new variants to
the original four. The new ones include
four Intel Xeon, three Intel Core, two
Intel Celeron and one Intel Pentium
processor—all based on the same Intel
microarchitecture (codenamed Coffee
Lake H). This enables Congatec to
provide all 10 new processors on one
COM Express module design.

• 8th gen Intel Core processor with up
to 6 Cores

• Intel Xeon processors for data center
applications

• Support for USB 3.1 Gen2 with
10Gbit/s

• Intel Optane memory support
• ECC memory support
• Up to 64GB dual channel DDR4

memory

Congatec
www.congatec.com

COMe Type 6 Board Features
AMD Ryzen Embedded SoC

The PCOM-B701 from American
Portwell is a Type 7 COM Express basic
(125mm x 95mm) module is designed
with the Intel Atom processor C3000
product family (codenamed Denverton).
Specifically, the COM Express 3.0
specification’s Type 7 pinout, when
compared to the Type 6 pinout, trades
all the graphics interfaces for up to
four 10 GbE ports and a total of 32 PCIe
lanes.

• COM Express Type 6 Basic form
factor

• Up to 4 Ryzen cores, AMD Radeon
GCN compute units

• Supports dual channel ECC DDR4
SO-DIMM horizontal socket (up to
16GB)

• Supports four 4K displays
• Supports USB 2.0/3.0, 1xSATA,
 1x PCIe x8 and 4x PCIe x1
• Next-generation AMD secure

processor

American Portwell
www.portwell.com

COM Express Boards

DATASHEET URLS:

American Portwell www.portwell.com/pdf/embedded/MEDM-B603.pdf

Congatec www.congatec.com/fileadmin/user_upload/Documents/Datasheets/conga-TS370.pdf

Eurotech www.eurotech.com/en/products/boards-modules/comexpress/cpu-162-23

http://www.eurotech.com
http://www.congatec.com
http://www.portwell.com
http://www.portwell.com/pdf/embedded/MEDM-B603.pdf
http://www.congatec.com/fileadmin/user_upload/Documents/Datasheets/conga-TS370.pdf
http://www.eurotech.com/en/products/boards-modules/comexpress/cpu-162-23

circuitcellar.com 49
D

ATASHEET

DATASHEET URLS:

Kontron www.kontron.com/products/come-compact/come-cwl6-e2s/come-cwl6-e2s_20190603_datasheet.pdf

MEN Micro www.menmicro.com/products/rugged-com-express/15cb71/

MSC Technologies www.msc-technologies.eu/products-solutions/products/boards/com-express-type-6/msc-c6b-cflr.html

Intel 9th Gen Processors Ride
Type 6 COMe Board

MSC Technologies’ MSC-C6B-CFLR
COM Express Type 6 modules are based
on the newest 9th generation Intel Core
processor. The Intel two-chip solution
allows highest performance in graphics
and computing on a COM Express
module in basic form factor.

• Intel Core i7-9850HE, Celeron
G4930E or E-2276ME

• Intel UHD Graphics and chipsets
QM370 or CM246

• Up to 32GB DDR4-2666 SDRAM, dual
channel

• 4x SATA 6Gb/s mass storage
interfaces

• 3x DisplayPort/HDMI/DVI interfaces
• Triple independent display support
• Eight PCIe x1 lanes, configurable up

to x4
• Intel Rapid Storage Technology

support

MSC Technologies
www.msc-technologies.eu

Rugged COM Express Card
Conforms to VITA 59

MEN Micro’s CB71C is an ultra-
rugged COM Express module for rail,
public transportation and industry
applications. It is 100% compatible
with COM Express Type 6 pin-out and
conforms to the VITA 59 standard,
which specifies robust mechanics to
ensure reliable operation even under
the harshest environmental conditions.

• AMD Ryzen Embedded V1000/R1000
series

• Up to 32GB DDR4 RAM with ECC
• Up to 4 Digital Display Interfaces

(DP, eDP, HDMI, DVI)
• Hardware memory encryption
• Safety-relevant supervision functions
• Support up to -40°C to +85°C Tcase,

conduction cooling
• VITA 59 in process, compliant with

COM Express Basic, type 6
• PICMG COM.0 COM Express version

also available

MEN Micro
www.menmicro.com

AMD Ryzen-Based COMe Cards
Support Industrial Temps

The COMe-cVR6 (E2) from Kontron
marries the COM Express compact form
factor and AMD’s Ryzen Embedded
V-Series processors. Through the use
of consistent COM Express connectors
and feature implementation, the
COMe-cVR6 is easily exchangeable and
offers the most flexibility for engineers
designing it into their embedded
devices based on individual carrier
boards.

• AMD Ryzen Embedded V1000 APUs
• Up to 4 independent display support
• Up to 24GB DDR4 memory (8GB

DDR4 soldered down)
• -40°C to +85°C operating temp.,

-40°C to +85°C non-operating
temp.

• Support for Kontron’s Embedded
Security Solution (Approtect)

Kontron
www.kontron.com

http://www.kontron.com/products/come-compact/come-cwl6-e2s/come-cwl6-e2s_20190603_datasheet.pdf
http://www.menmicro.com/products/rugged-com-express/15cb71/
http://www.msc-technologies.eu/products-solutions/products/boards/com-express-type-6/msc-c6b-cflr.html
http://www.msc-technologies.eu
http://www.menmicro.com
http://www.kontron.com

CIRCUIT CELLAR • JANUARY 2020 #35450
CO

LU
M

NS

By
Colin O’Flynn

Embedded System Essentials

Building Against
Fault Injection Attacks
Cautious Coding

I n several articles now, I’ve brought up
the idea of fault injection (FI) attacks,
and how they could be used to bypass
security. I previously demonstrated this

as a method of dumping a private key from a
USB key (Circuit Cellar 342, May 2019), as well
as demonstrating how you could bypass fuse
bytes (Circuit Cellar 338, September 2018),
and how electromagnetic fault injection works
(Circuit Cellar 352, November 2019).

I also gave an overview of several fault
injection attacks in my January 2018 article
(Circuit Cellar 330). All of those have been
about the offense. So, in this article, I’m
going to discuss the defense—how you can
help improve your code against such attacks.
Check out some of those old articles for more
details on how we perform FI attacks as well.
With all that in mind, let’s dig in!

WHAT ARE FAULT ATTACKS?
While I’ve covered fault attacks previously

in more detail, it’s worth recapping what
exactly these attacks can accomplish. A fault
attack is one where an attacker modifies the
flow of the program, normally in order to
bypass security mechanisms. These bypasses
can have devastating effects. We often rely
on things like fuse bytes to protect our IP
programmed into a microcontroller (MCU) for
example, or we rely on a signature operation

to ensure that only valid code is loaded onto
the MCU.

Unfortunately, there isn’t much you can
do when the MCU features themselves are
vulnerable to a FI attack. If using the LPC1114
from NXP Semiconductors that I demonstrated
attacking in my May 2018 (Circuit Cellar 334)
article (based on work by Chris Gerlinsky), you
must try to rearchitect your system to work
within the new security bounds. This would
mean not storing any critical secrets with the
flash, because you know it can be easily read
by an attacker.

Luckily, not all devices have easily
exploitable implementations. This means you
are given a useful starting point, but it’s easy
to quickly shoot yourself in the foot. As two
examples, let’s first look at a simple output
routine in Listing 1. This C-level code might
not have an obvious exploitable defect, being
just a simple loop, right? First let’s take a
look at Listing 2, which is the assembly code
generated by a recent Arm GCC compiler.
If you want to explore the connection
between C and ASM, be sure to check out
godbolt.org which is an online compiler
explorer as shown in Figure 1.

Now, the loop ending in Listing 2 has
been converted to a “branch if not equal” or
bne instruction. This minor fact has a very
significant implication for our fault injection
attack: Should an attacker “skip” a single
comparison during the end value of the loop,
the loop will now continue to iterate until the
integer value wraps around! And this type of
effect is exactly what an attacker can do in
practice, meaning they can suddenly dump
huge sections of code. If the loop was done
with a “branch if less than” instruction, the
attacker would need to skip that instruction
on every iteration through the loop.

Fault injection are powerful attacks for bypassing security mechanisms. Rather
than work on just showing the attacks, in this article Colin demonstrates how you
can start to protect against them with some modest changes to your code flow.

void write_bytes(char * data[], unsigned int datalen) {
 for(int i = 0; i < datalen; i++){
 uart_write(data[i]);
 }
}

LISTING 1
A simple function for sending a buffer over a serial port

circuitcellar.com 51
CO

LU
M

NS

This type of attack was demonstrated by Micah Scott
for dumping an entire MCU firmware over USB. The link to
a detailed video on this is posted on Circuit Cellar’s article
materials webpage. Other people have used the attack in a
similar fashion, causing a target device to simply “read out”
memory. You can see how minor changes in program flow (in
this case the compiler adding a “branch if not equal“) have big
effects, so I wanted to take you through a few more obvious
“poor design choices” that make you especially vulnerable to
fault injection attacks.

FAULTY TOWERS
Now the previous example might be interesting, but it’s not

the most common target. In fact, the most common target is
typically a signature or password check function. If you take a
look at most bootloaders on the market nowadays, what you’ll
find is a piece of code that looks something like Listing 3. This
type of logic is found in almost every embedded bootloader
I’ve recently examined, so I won’t single any particular
vendors out (but they know who they are!).

What is the problem with this? If you skip the signature
check, suddenly you are booting the unvalidated image.
While the attack does require some level of physical access to
perform, the typical attack vector has someone performing
this attack once to dump code memory. Once the attacker has
the code memory, they may be able to find other vulnerabilities
or even read out sensitive (secret) keys they can then use to
perform a more advanced attack.

Rather than skipping the check, another pattern is some
sort of “jump to infinite loop,” as shown in Listing 4. Again, it’s
not always the case that the designer intended to generate this
program flow, but that the compiler may have inserted it. This
infinite loop is a poor practice, since an attacker doesn’t need
to be particularly clever with their timing to jump out of the
loop. In the example in Listing 4, we perform the same type
of image validation as Listing 3. But in the program flow from
Listing 4, a failed image means we go into an infinite loop that
requires a system reset. But an attacker can instead send an
incorrect image, and then perform a fault injection attack to
skip one of the branch instructions making up the infinite loop.

Once the attacker breaks out of the loop, the code
continues to execute as if a valid image was loaded. This
type of code flow goes back to satellite TV smart-card days.
(some of you may remember the idea of “unloopers.”) It’s
particularly vulnerable because it doesn’t require the careful
timing that the code flow from Listing 3 required.

LEANING TOWERS
While the previous fault vulnerabilities might seem obvious

(at least in retrospect), it’s not always easy to prevent them
from being attacked. Consider an attempt someone has made
in Listing 5 to protect their comparison function by adding
some time jitter. The idea here being that an attacker breaking
Listing 3 would be sweeping though time to find the right location
where the comparison happens. By adding significant time jitter
in Listing 5, it means an attacker no longer has perfect timing.
This doesn’t necessarily make the attack impossible, but it
should make the attack much harder to replicate.

The problem is that if we again look at the assembly code
in Listing 6, you can see the jump to the delay function could

FIGURE 1
This is an example of comparing C to ASM using Godbolt.org, which will be a useful resource as you explore examples in this article.

write_bytes:
 push {r4, r5, r6, lr}
 subs r5, r1, #0
 beq .L1
 sub r4, r0, #4
 add r5, r4, r5, lsl #2
.L3:
 ldr r0, [r4, #4]!
 bl uart_write
 cmp r5, r4
 bne .L3
.L1:
 pop {r4, r5, r6, lr}
 bx lr

LISTING 2
The resulting arm assembly code from Listing 1

CIRCUIT CELLAR • JANUARY 2020 #35452
CO

LU
M

NS

be skipped! This might require two faults in a row, which may
be reasonably practical as just requires skipping multiple
instructions compared to one.

Since you likely came to this article for guidance and not
more examples of incorrect code, let’s move on to how we can
do this correctly.

POWER TOWERS
First, we need to understand that adding fault tolerance is

likely to add overhead in both code size and speed. But we can
get away with some pretty minor adjustments. One example
of more difficult-to-fault code is given in Listing 7. The major
change is I’ve now introduced two variables. I first load the
untrusted image into test_image, rather than directly into

Additional materials from the author are available at:
www.circuitcellar.com/article-materials

void * boot_image;

load_image(boot_image);

if (verify_image(boot_image)) {
 jump_to_image(boot_image);
}

boot_backup_image();

LISTING 3
A simple bootloader that performs image verification on a received image

void * boot_image;

load_image(boot_image);

// verify_image() Returns -1 if
// verification fails
if (verify_image(boot_image) < 0) {
 //User must reset device to retry
 while(1);
}

jump_to_image(boot_image);

LISTING 4
Program flow using an infinite loop after a failed comparison

void * boot_image;
load_image(boot_image);
delay(random());

if (verify_image(boot_image)) {
 jump_to_image(boot_image);
}
while(1);

LISTING 5
Time jitter used to attempt and complicate FI attacks

main:
 push {r4, lr}
 mov r4, #0
 mov r0, r4
 bl load_image
 bl random
 bl delay
 mov r0, r4
 bl verify_image
 cmp r0, r4
 bne .L8
.L5:
 b .L5
.L8:
 mov r0, r4
 bl jump_to_image
 b .L5

LISTING 6
Assembly code from Listing 5 shows the delay itself can be skipped.

void * test_image;
void * boot_image = ERROR_HANDLER_ADDRESS;
unsigned int status = 0;

load_image(test_image);

delay(random());
status = verify_image(test_image, &boot_image)
//verify_image copies test_image to boot_image
if (status == 0xDEADF00D) {
 //Looks OK...
 delay(random());
 jump_to_image(boot_image);
} else if (status == 0xF4110911) {
 //Signature failed
 test_image = NULL;
 boot_image = NULL;
 while(1);
} else {
 //Unexpected result - fault attack??
 erase_sensitive_data();
 while(1);
}
boot_backup_image();

LISTING 7
Simple fault injection armored code from Listing 3

ABOUT THE AUTHOR
Colin O’Flynn (colin@oflynn.
com) has been building and
breaking electronic devices
for many years. He is an
assistant professor at Dalhousie
University, and also CTO of
NewAE Technology both based in
Halifax, NS, Canada. Some of his
work is posted on his website at
www.colinoflynn.com.

http://www.circuitcellar.com/article-materials
http://www.colinoflynn.com
mailto:colinoflynn.com

circuitcellar.com 53
CO

LU
M

NS

the final image that we’ll boot. The other thing I do is push
the actual assignment of boot_image into the comparison
function itself, where we can do more complex operations.

Now the value of boot_image will only be set to the
trusted value somewhere inside the verification function. In
addition, I’ve made more complex return values that are less
likely to be faulted. The function comparison is checked against
a specific value, rather than just checked against being non-
zero. Should an attacker be corrupting memory instead of
skipping instructions, they will find it more difficult to corrupt
memory into the specific value I’m checking. With this, I can
also detect unexpected operating conditions that could be
an ongoing attack. Our ability to respond will depend on the
device. Such failures could in fact be innocent mistakes—such
as ESD discharge or corrupted memory—but we are now
making conscious decisions to deal with the detection flag.

Now I’ve hidden the special verify_image() function
away from you, so we also need to explore that a little before
I can claim I’ve given you a complete look. This is shown in
Listing 8. What makes this function more difficult to glitch?
First off, you’ll notice comparisons are done multiple times.
In this case there are several comparisons that check if the
expected hash matches the calculated, and if that fails it will
return a failure flag.

The other major change, is that there is no single comparison
that carries the sensitive operation. You’ll notice that the
critical variable in this case is the possible_ptr variable. If
the hash comparison is successful, this variable will get copied
to the boot_image variable. But several “unmasking” steps
are needed for the valid value to get loaded, including toggling
several bits that will otherwise cause this to point to some
invalid memory area. In theory, the call in Listing 7 to jump_
to_image() with the expected image point will only occur if

every comparison passes successfully in Listing 8.
Of course, this is all done from the C code level! Looking

at assembly you can still identify some potential risky points.
For example, what if the calls that are supposed to initialized
expected_hash and hash never happen? Well, suddenly
this means the entire comparison would pass! So additional
guarding of the variables is needed to ensure you cannot
simply skip that initial setup. But keeping fault attacks in
mind is the most critical first step in designing truly secure
embedded systems.

TOWER GUARD
How can you use this in practice then? I’ve already shown

you that fault injection attacks are a serious threat to any
embedded system. A careful review of your code should show
you were attackers might find the most valuable targets, and
you can concentrate on building fault injection resistant code
around those points.

To help you out here, I’ve released an open-source library
called ChipArmour (being Canadian I keep the “u” in Armour)
that uses some of these best practices. You can either use
the library as a reference for building fault-injection resistant
code, or directly integrate it into your firmware project. This
library is released under a permissive Apache license, so you
can use this in both your own open-source and commercial
projects.

My future columns will explore ChipArmour in more detail.
This is still in an early beta, so you may not find a complete
build available when you are reading this column. But I
wanted to first bring you through the specifics of how fault
injection attacks can be applied to a simple codebase, and
how you can reduce the vulnerability of your existing code to
fault injection attacks with some small modifications.

unsigned int verify_image(void * image, void ** boot_ptr)
{
 //We’ll compare expected_hash to hash
 unsigned int expected_hash = get_known_hash();
 unsigned int hash = calculate_hash(image);

 //We also mask the value of the pointer we will jump to
 //Correctly executing code will remove these effects to
 //leave the original image pointer.
 void * possible_ptr = (void *)get_known_hash() ^ image;
 possible_ptr ^= (void *)(1 << 14);
 possible_ptr ^= (void *)(1<<15);

 //Perform multiple tests
 if (expected_hash != hash) return 0xF4110911;
 if (expected_hash == hash) possible_ptr ^= (void *)(1 << 14);
 delay(random());
 if (expected_hash == hash) possible_ptr ^= (void *)(1 << 15);
 if (expected_hash != hash) return 0xF4110911;
 delay(random());
 if (expected_hash == hash) possible_ptr ^= (void *)expected_hash;
 if (expected_hash != hash) return 0xF4110911;
 if (expected_hash == hash) *boot_ptr = possible_ptr
 if (expected_hash == hash) return 0xDEADF00D;
 return -1;
}

LISTING 8
Details of the verification function,
which requires correct execution to
result in a useful result

CIRCUIT CELLAR • JANUARY 2020 #35454
CO

LU
M

NS

Picking Up Mixed Signals

Relaxation Generator: Reloaded

A bout 10 years ago, I published a Circuit
Cellar article about a project I had
designed that could generate relaxing
sounds, such as ocean waves, brooks

and rainfall. I ran this device at night for help falling
asleep, and to mask out random outdoor noises
that would wake up our dogs, whose barking would
then wake us up. Incorporated in the project was
a digital clock with an alarm feature that shut off
those sounds.

The design for that project had to be more
hardware-intensive 10 years back. At the time, I was
using only Atmel 8-bit AVR microcontrollers (MCUs),
and I had to choose a model that was close to top-
of-the-line to get the functionality I needed (Atmel
is now part of Microchip Technology). I also needed
five other support chips to complete the design. I re-
designed the project once—about 5 years ago—when
I started using Arm MCUs. More recently, I decided to
build a more modern version, with an Espressif ESP32
MCU to provide Internet connectivity. In this article, I
describe this newest version of my project.

REAL-TIME-CLOCK CHOICES
Because alarm clock functions were important to

this project, I needed a real-time-clock (RTC) circuit
of some sort to handle the time-keeping. Because
power outages sometimes occur where I live, I
wanted an RTC that would maintain the time through
a power outage. In my first model, that function was
handled by Maxim Integrated’s DS1307, and, in a later
version, a Philips PCF8563. Both versions used a 3.3V
coin cell as the battery backup. The design of the
earlier models was such that powering the entire unit
from a battery was not practical. Power supplies of
10V, 5V and 3.3V would be needed. Therefore, when a
power failure occurred, the “Wave” sound would stop.
If you have used one of these relaxation devices, you
know—as we found—that once the sound stops, you
quickly wake up. For the earlier versions, this was a
shortcoming. At least the clock never needed to be
reset, because the RTC chip was backed up by the
coin cell.

This time around, I decided that I wanted the
entire unit to be capable of running from a battery

Some years ago, Brian wrote an article for Circuit Cellar about his project that
generates relaxing sounds—ocean waves, rainfall and such—and inculpating a digital
clock to shut off the sounds. At the time, he built it with only Atmel 8-bit AVR MCUs
and support chips. In this article, Brian describes his more modern version of the
project, this time built with an Espressif ESP32 MCU to provide Internet connectivity.

Internet Era Upgrade

By
Brian Millier

circuitcellar.com 55
CO

LU
M

NS

for 12 or more hours. That eliminated the
need for a discrete RTC chip, since the ESP32
MCU can maintain the correct time completely
in software—as long as it’s powered up. The
newest version needs no manual setting
of the clock, because the ESP32 connects
to my home Wi-Fi router, and gets its time
setting from an Internet-based Network Time
Protocol (NTP) server.

The main reason I was able to power
the whole project from a battery for an
extended period partially stems from the
choice of an extremely efficient digital audio
amplifier module for this version. The earlier
versions used a Class-B linear power amplifier
(NXP Semiconductors’ TDA1517), which
produced excellent quality sound but needed
a 10V power supply and drew a significant
amount of current.

SOUND FILE DATA STORAGE
One aspect of the project that didn’t

change over the 10 years was how the sound
files were stored. I wanted to have several
different sounds available. These sounds are
played repetitively in a “loop,” but you want
each of them to have some variety over time,
so they should be at least a few minutes long.
It turns out that the sounds of brooks and
ocean waves involve a significant amount of
high audio frequencies, so I settled on the
16-bit/44kHz sampling rate (CD standard).
Furthermore, I produce these sounds in
stereo, with one speaker on a bedside table
on each side of the bed. This gives a much
more immersive sound.

It turns out that no low-cost, serial flash
EEPROM devices are available that can handle
the amount of data that these several files
would contain. However, inexpensive SD cards
are readily available. Even the lowest-capacity
SD cards now available have much more
storage capacity than is needed for even 25
such sound files. I chose an LCD display that
contained an SD card socket, eliminating the
cost and wiring of a separate SD card socket.

Although I have built devices that

reproduced the popular, highly compressed
MP3 file format, I did not consider this format
here. That’s because it would require either
an external MP3 decoder chip such as the
VS1033, or a significant amount of processing
by the ESP32 MCU. The ESP32 is capable of
MP3 decoding, and software libraries are
available. However, I didn’t see any advantage
in using a compressed sound file format,
given the huge amount of storage available
on even the smallest SD card. The ESP32 has
other tasks to perform in the project, and
there was always a chance it would not be
able to handle everything in real time, with no
glitches in the sound output.

I chose the standard Microsoft .WAV
file format, because it is well documented
and easy to handle in software. Another
advantage is that you can find “relaxing”
nature sound files readily on the Internet, and
these files are generally in the .WAV format.
The .WAV format contains one or more
sections of metadata in various “headers,”
prior to the large block of data containing
the actual waveform data. Although these
headers contain useful information—such as
the song name, data rate and the number of
bits resolution—I don’t try to parse out this
information from the header sections (called
“chunks”).

The project is designed for a sample rate
of 44,100Hz, 16-bit stereo data, and that is
the format that the .WAV file(s) must be in
for proper operation. Therefore, all I must
look for in the file is the word “data.” Once
I find that, the next 4 bytes make up a 32-
bit number defining the length of the actual
waveform data. I use this value to determine
when I have reached the end of the waveform
data. Immediately following the 4 file-length
bytes are the actual data, and that is where I
start reading the waveform data.

Figure 1 shows a hex dump of the
beginning of an actual .WAV file that I use, with
the “data” bytes circled in green. Although the
bytes making up the string “data” are in the
expected order, the following 4 bytes defining

FIGURE 1
A hex dump of the beginning of
a .WAV file. The start of the data
“chunk” is marked by the ASCII string
“data,” which I’ve circled in green.

CIRCUIT CELLAR • JANUARY 2020 #35456
CO

LU
M

NS

the file length, are in the big-Endian format,
so you have to read them “backwards.” That
is, the 0xA0423F08 value shown after “data”
in Figure 1 equals 138,363,552 bytes. This file
happened to be an hour long. In practice, one
could use files that were only a few minutes
long, as they are looped, and there is no
“dead” (muted) time interval between the
end of the file and when it starts back at the
beginning.

THE CLOCK DISPLAY
One aspect of my earlier designs that

wasn’t ideal was the clock display. Initially, I
used a common 20×2-character LCD display
with an LED backlight. It was easy to dim the
LED backlight, so that it was not so bright as
to disturb sleeping. However, as with all LCD
character displays, the font was small and
hard to read at any distance. I designed my
own larger font using four adjacent character
positions, so it was useable.

For the next version, I used an Adafruit
4-digit LED display module. I chose it because
it contains its own controller chip and is
interfaced via I2C. The Arm MCU module that
I was using (a Teensy 3.2) did not have a lot of
spare GPIO pins, so the two-wire I2C interface
was essential. The controller on this module
can set 16 different LED brightness levels (by
adjusting the LED current). However, I found
that even the lowest brightness level seemed
too bright for my liking at night. Even placing
a colored filter in front of the LED module
didn’t dim it enough.

For my latest version, I chose a common
and inexpensive 2.8” color TFT display. An LCD
display produces no actual light of its own,
but merely filters/blocks the light emitted
from its LED backlight. I control that backlight

using a PWM (pulse width modulation) pin on
the ESP32, so users have complete control
over how dim they want the display to be. The
software adjusts the backlight brightness,
depending on whether it’s day or night. The
controller library for this display contains the
ability to use many different fonts/sizes, and I
chose one that displays 0.5"-high characters,
which are easily readable even when you’re
half asleep!

One consideration that I initially
overlooked, when choosing a graphic TFT LCD
display, was the amount of time it would take
to update the clock display. The TFT display is
interfaced via SPI, and the ESP32 can handle
high SPI data rates (40MHz). However, there
is more to it than that. To simultaneously
produce the relaxation sounds, the SD card
(also an SPI device) must be accessed at a
high enough rate to provide 176,400 data
bytes per second. The SD card interface
cannot handle the 40MHz SPI rate, however.

The waveform data must be transferred
via the I2S bus to the two DACs that provide
the 44.1KHz/16-bit stereo sound output. The
DACs themselves have no internal buffers,
so they must be fed data at a steady rate
of 176,400 bytes/s, to produce “glitch-free”
sound output. Therefore, the time it takes
to update the TFT display must not interfere
with the steady data flow needed for the
sound output.

I found it interesting to note that on my
10-year-old version of this project, I was able
to accomplish this audio streaming with an
8-bit ATMega644 MCU clocked at 20MHz, using
a single interrupt service routine and some
hand-coded assembly language. The 32 bit
ESP32 MCU runs at 240MHz and contains
two cores. Its I2S library routine uses DMA
transfers. Even with all this MCU horsepower
and DMA, it was tricky to accomplish the TFT
clock display update, without introducing any
glitches into the audio playback. More on this
later in the “Software” section.

THE DACS: MAXIM MAX98357
In my original version of this project 10

years ago, the Atmel ATmega644 MCU that
I used was among the fastest 8-bit MCUs
available. But it didn’t contain an I2S port.
Neither did most general-purpose MCUs of the
day. Therefore, I used a common MCP4822
SPI 2-channel 12-bit DAC, and followed it with
a TDA1517 linear stereo power amplifier chip.

This time around I used two MAX98357
devices from Maxim Integrated. The
MAX98357 contains an I2S 16-bit DAC and a
Class D audio amplifier, capable of putting
out 3.2W of power using only a 5V power
source. I used two of these for stereo. This
choice helped to reduce the overall power

SD_Mode status External Resistor Selected Channel
HIGH 0Ωto VIN Left

Pull-up through RSMALL 470kΩ to VIN Right
Pull-up through RLARGE floating (Left + Right)/2

LOW 0Ωto GND Shut down

TABLE 1
The four different modes available on the Adafruit breakout board

GAIN_SLOT configuration Gain (dB)

Connected to GND via 100kΩ resistor 15

Connected directly to GND 12
Unconnected 9

Connected to VDD 6
Connected to VDD via 100kΩ resister 3

TABLE 2
GAIN_SLOT configurations on the Adafruit breakout board

circuitcellar.com 57
CO

LU
M

NS

consumption to a level where four AA batteries
could be used for backup power lasting for
12 hours or more.

These devices come in either a very tiny
WLP (wafer-level packaging) package or a tiny
TQFN (thin quad flat no leads) package. There
is no way I can personally solder such a small
device to a PCB by hand. Adafruit comes to the
rescue again, by selling a breakout module
containing a MAX98357 device. The price
of the Adafruit module is very reasonable
considering it would cost about half that price
for the MAX98357 IC, alone.

The MAX98357 requires three of the
standard I2S signals: BCLK, LRCLK and DATA—
but does not require the higher frequency
MCLK signal normally needed by many other
audio codecs, DACs and other devices. This is
important. Although the ESP32 can produce
the high-frequency MCLK signal, it can only
route that signal to GPIO0, which may not be
available in some project designs.

If you feed the same three I2S signals to
both MAX98357 chips, how does each device
know if it is the left or the right channel? This
is handled in a clever way on these devices.
There is a single analog input pin (SD_MODE)
that determines in which of four modes it
will run. In the case of the Adafruit module,
there is a 1MΩ pull-up resistor connected to
the SD_MODE pin and the MAX98357, itself,
has an internal 100kΩ pull-down resistor. The
four different modes available on the Adafruit
breakout board can be achieved as shown in
Table 1.

The MAX98357 devices use BTL (bridge-
tied load) outputs—that is, the two output
pins are differentially-driven, and neither one
should be connected to ground. This rules out
the use of headphones with the MAX98357,
since headphones generally have Left, Right
and Common wires. Driving two separate
speakers is fine, though. The last feature of
the MAX98357 is the adjustable Gain pin. If
you assume that the I2S digital signal being
fed into the MAX98357 is at full scale (0dBV),
the output signal level is: Output Signal Level
(dBV) = 2.1dB + selected Amplifier Gain (dB).

The Amplifier Gain is determined by the
configuration of the Gain Slot pin, labeled
Gain on the Adafruit breakout board (Table 2).
Regardless of the digital input signal and
amplifier gain, the maximum voltage that
the MAX98357 can put out is limited by the
5V suggested maximum VDD limit. Because of
the BTL output configuration, the maximum
signal output is 2 × 5V or 10VPP (minus small
voltage drops from the internal MOSFET
output drivers). According to the MAX98357
specs, the maximum power output with a
4Ω speaker is 3.2W, which corresponds to a
peak-to-peak output signal level of 8.9V.

Using a full-scale I2S digital input and the
maximum gain of 15dB, the output signal level
would be 2.1 + 15 = 17.2dBV. This corresponds
to 7.24VRMS or 20.5V peak-to-peak, which
is more than double the maximum output
voltage, so a lot of distortion would occur.
Clearly, the 12dB and 15dB gains are meant
to be used only when the I2S digital input
signals are much less than the digital, full-
scale values.

DIGITAL VOLUME CONTROL
I needed to have a volume control in the

unit. However, since the signal chain is digital
all the way to the speakers, the only way to
accomplish this is in the software. The 16-
bit digital waveform values coming from the
SD card’s .WAV file must be divided by some
constant, which is derived from the volume
control’s setting. The 10kΩ volume control
in the project is fed from a 2.5V reference
IC through a 15kΩ resistor, which places 1V
across it. The ESP32’s internal ADC has a
voltage reference of 1.0V. Using the ADC to
measure the pot position, the wiper’s voltage
will span the entire ADC input range. I use
the 8-bit ADC value to determine the constant
mentioned above.

I must admit I didn’t look too closely at the
calculations shown in the previous MAX98357
DAC section, before I decided to go with the
MAX98357 digital amplifier modules for this
project. I had them on hand and had used
them for an earlier project. In that project, I
was pleasantly surprised that each MAX98357

I2S Bus

PT8211
16-bit Audio DAC

Dual 10k Audio
taper pot

Adafruit ID 1552
TPA2012D2 Stereo
2.1W Class D Amplifier

10 uF

10 uF

C1

VCC

SP1
BCK
WS
DIN
GND

RC
NC

LCH
VDD

+

−

SP2
+

−

GND

GND

GND

U1

C2

R1

R2

FIGURE 2
This block diagram shows what would have been a better audio output circuit than the one I had chosen.

ABOUT THE AUTHOR
Brian Millier runs Computer Interface Consultants. He was an instrumentation
engineer in the Department of Chemistry at Dalhousie University
(Halifax, NS, Canada) for 29 years.

CIRCUIT CELLAR • JANUARY 2020 #35458
CO

LU
M

NS

could drive an older hi-fi loudspeaker cabinet
with a 12" woofer (and tweeter), adequately
filling a 250ft2 room.

For this project, I was using only two small
speaker enclosures with 5” woofers. More
importantly, the sound levels needed would
be much lower, since you are trying to sleep
while the unit is operating. Therefore, I wired
the Gain_Slot pins for the minimum 3dB gain
setting. At this low gain setting, the signal
output level (with an F.S. digital input) would
be 5.1dBV (1.8VRMS) or about 0.8W (double for
two channels). It turned out that significantly
less power per speaker was needed for
comfortable audio levels.

The digital volume control is working
with 16-bit integer waveforms. I reduce the
default amplitude of the 16-bit waveform
by multiplying it by some value in the range
of 1 to 255, based upon the setting of the
volume pot. Then I divide this value 256, by
arithmetically shifting the number left eight
times. For the amount of attenuation that I
found was needed to produce a reasonable
sound level at night, this works fine and
doesn’t reduce the resolution of the audio
waveform enough to be objectionable.

In hindsight, I realize that I could have
made a better design choice for audio output.
Given the small amount of audio power
actually needed, I could have used a circuit like
the one shown in Figure 2. That would have
eliminated the need for software control of the
volume, which would have eased some of the
software timing constraints I had to handle.
I have numerous PT8211 DACs on hand. I
had to buy ten at about $1 each. However,
they are not readily available through normal
USA distributers. Also, the TP2012D2 Class D
amplifier could have been replaced by two
Texas Instruments (TI) LM386 linear power
amplifier ICs. Even with a VCC of only 5V, they
would have put out enough audio power, and
not used a whole lot of current.

THE CIRCUIT DIAGRAM
Figure 3 is the overall circuit diagram.

The ESP32 chip and supporting components/
antenna are mounted on what Espressif calls
the ESP32 DevKitC module. Espressif first
produced these, and still sells an updated
version. Not all the DevKitC modules use
the same pin layout as what I show in the
diagram. My module has male pins mounted

FIGURE 3
Schematic of the complete unit. Note that the PJRC color TFT display needs to have three resistors jumpered out, in order for the SD card socket to work reliably.

circuitcellar.com 59
CO

LU
M

NS

on the bottom of the PC board, as shown in
Figure 4.

For some reason, the newer Espressif
DevKitC modules have female headers
mounted on the top of the PC board. That
would mean, for example, that I couldn’t swap
in the newer model into my project because
the pins would all be flipped 180 degrees. I
don’t know how you are expected to use the
Boot and EN buttons on these newer boards,
because they would be covered up by the
module when it was plugged in.

The ESP32 DevKitC is programmed
via its micro USB port, using the built-in
serial bootloader. I do my ESP32 software
development using the Arduino IDE, loaded
with the ESP32 boards package. With the
Arduino IDE, downloading ESP32 program
code to the DevKitC is simple: the “normal”
ESP32 requirement of depressing the Boot
button, while toggling the EN button on/off to
download code is unnecessary. This is handled
by the DTR and RTS handshake signals coming
from the Silicon Labs’ 2102 USB/serial bridge
device on-board the DevKitC module. The
Arduino ESP32 downloading tool toggles the
DTR/RTS lines properly, whereas other ESP32
downloading applications may or may not do
this.

One issue with some of the ESP32 DevKitC
modules I have used concerns the power-up
reset. During project development, I kept
the DevKitC plugged into my PC’s USB port
for power and for programming purposes.
Connected this way, the 2102 USB/serial
bridge will assert the DTR/RTS signals, so
that the ESP32 will reset properly and start
program execution as soon as the DevKitC
board is enumerated by the PC as a valid USB
com port device. However, the ESP32 would
not execute a normal power-up reset when
I tried to power the project using any of the
following setups:

1)	 A USB power adapter plugged into the

DevKitC USB socket
2)	 A battery pack consisting of three AA cells,

feeding the VIN pin
3)	 A 3.7V LiPo battery feeding the VIN pin

The DevKitC module has a 3.3V LDO
regulator on board to power the ESP32, so a
battery supply to the Vin pin will work properly
if the battery is greater than 3.3V (and ideally
not much more than 6V). When using either
of the two different battery sources, the
ESP32’s VIN supply voltage should have risen
to full value immediately, except for some
delay charging the two 1,000µF capacitors
(C2 and C3), which act as reservoirs for the
two MAX98357 amplifier modules. In the case
of the USB power adapter, the 5V would have

risen somewhat slower than either of the
batteries would have.

In all the aforementioned three cases, it
appeared that the power to the ESP32 was
not coming up to specs quickly enough for
a proper ESP32 reset to occur. I temporarily
removed the two 1,000µF capacitors, but that
didn’t help. After consulting ESP32 forums,
I ran across this issue in several posts. I
eventually solved it by adding a 1µF capacitor
(C4) to the ESP32’s EN (reset) line. Note that
the VIN pin is actually labeled “5V” on the
DevKitC, though it needn’t be a regulated 5V,
as noted earlier.

SPI INTERFACE
I mentioned before that it was tricky to

stream the audio data from the SD card to the
I2S DACs, while also updating the TFT display
without introducing audio glitches. Both the
TFT display and the SD card interface use an
SPI interface. The TFT display can handle SPI
transfers at the 40MHz maximum SPI clock
rate that the ESP32 can put out. Even at this
high rate, I measured the display update time
at 9.6ms, and that only involved updating the
current time using five large-font characters.

Many fancy fonts are available with this
library, but they require you to “erase” the
screen area “under” the characters when
refreshing the display, or you will just add
the new character’s pixels on top of the old
character, resulting in an unreadable display.
Therefore, I chose the most primitive “block”
font, since it did not need erasing and thus
updated more quickly.

The SD card’s SPI interface can’t handle
the 40MHz SPI rate. In fact, the Arduino
SD card library runs at an SPI rate of only
4MHz. Most of the current Arduino libraries
for SPI peripherals use what is called a

FIGURE 4
Photo of the ESP32 DevKitC. The module I used has its male pins on the bottom of the PCB. Newer versions
by Espressif have female headers mounted on the top of the board.

CIRCUIT CELLAR • JANUARY 2020 #35460
CO

LU
M

NS

“transactional” approach. That is, any library
functions that directly perform SPI transfers
will set up the SPI port for the proper SPI mode
and clock rate parameters (as configured for
that peripheral), prior to sending each SPI
message. Therefore, if there is more than one
device sharing the SPI bus, the SPI port will
be properly configured for each peripheral
in advance as it is accessed. This was a big
advance for Arduino SPI libraries, in such
cases. But it does slow things down a bit.

For this project, I decided to use both
SPI ports available on the ESP32—a third
is dedicated to the DevKitC’s flash memory
device. The TFT display is driven by the

ESP32’s HSPI port and the SD card is driven by
the VSPI port, which is the default SPI port used
by most ESP32 libraries that use SPI. I didn’t
delve deeply into either the SD card or the TFT
display libraries enough to know if using both
ports was any faster than using only one SPI
port. But early in my coding, I was experiencing
audio glitches until I got the code optimized, so
it was worth doing it this way.

Both MAX98357 DACs use the I2S port. This
is a synchronous serial protocol that requires
4 bytes of audio data to be sent to the DAC
at the chosen sample rate (44,100Hz). This
data transfer must be a steady flow. There
is no buffer inside the DAC to handle data, if
it were to be sent in a burst mode. Luckily,
Espressif has written a DMA-driven I2S library
that handles this task. Since it is DMA-driven,
it acts in the background, and other program
code, such as fetching the next sector of data
from the SD card, can operate concurrently.

TFT DISPLAY
The display I used is a 2.8” TFT touchscreen

display with a resolution of 320 × 240 pixels.
As just mentioned, it uses an SPI interface
that can handle the high speeds put out by
the ESP32’s HSPI port. I generally get these
displays from PJRC.com, and they work very
well. I recently got one of them from another
source, and while it worked, it was too dim for
normal use. I decided to use that one in this
project, as I need a dim display for nighttime
use anyway.

While this display includes a touchscreen,
I didn’t use that feature. I know that the
touchscreen and the associated XPT2046_
touchscreen Teensy library from PJRC work
well. I find using touch on such a small display
to be awkward, so I decided to use three
switches and a rotary encoder for the user
interface. This TFT display includes a standard-
sized SD card socket. I had seen posts on
forums claiming that the SD card interface
on this display didn’t work. It turns out that
there are three resistors (R1,2,3) on the board
that must be jumpered (shorted out). With that
taken care of, the SD card interface worked
fine, using the ESP32’s VSPI port.

To dim the display at night, I used a PWM
output from the ESP32 to feed Q1, a PNP
transistor. This provided a PWM-controlled
current to the display’s LED backlight. The
ESP32 contains a very sophisticated “LEDC”
controller. It can generate up to 16 PWM
signals on user-defined GPIO pins, completely
in hardware. In my article “Exploring the
ESP32’s Peripheral Blocks” in Circuit Cellar
332 (March 2018), I discussed this peripheral
in detail, along with a few other unique
ESP32 peripherals. Today there are high-level
library routines available to configure these

FIGURE 5
Photo of the unit from the back in its cabinet. The four AA cells are not shown, because they are mounted
on the back panel.

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials

RESOURCES

Adafruit | www.adafruit.com

Cadence Design Systems | www.cadence.com

Espressif Systems | www.espressif.com

Maxim Integrated | www.maximintegrated.com

Microchip Technology | www.microchip.com

NXP Semiconductors | www.nxp.com

PJRC | www.pjrc.com

Silicon Labs | www.silabs.com

Texas Instruments | www.ti.com

U‑blox | www.u‑blox.com

http://www.circuitcellar.com/article-materials
http://www.adafruit.com
http://www.cadence.com
http://www.espressif.com
http://www.maximintegrated.com
http://www.microchip.com
http://www.nxp.com
http://www.pjrc.com
http://www.silabs.com
http://www.ti.com
http://www.u%E2%80%91blox.com

circuitcellar.com 61
CO

LU
M

NS

peripherals, but when I wrote that article,
they weren’t available, so I wrote my own
routines.

POWER CHOICES
The project is normally powered by a USB

power adapter capable of at least 500mA,
which is plugged directly into the micro USB
socket on the DevKitC. For battery backup,
I decided to use three AA cells instead of a
LiPo battery. Because power failures are
infrequent, I assumed the battery backup
would be used only sporadically. The shelf
life of alkaline batteries approaches 10 years,
so they wouldn’t have to be checked often.
Three fresh AA cells will put out 4.8V. I placed
a Schottky diode in series with the positive
battery supply lead to prevent current from
the 5V USB power module from entering the
battery chain.

The project uses about 100mA when it is
not playing any sound, and about 150mA when
it is playing sound. This varies somewhat
depending upon what level of dimming you
apply to the TFT display. During the day, it
contacts an NTP server once every hour to
synchronize the time. This is a bit of overkill,
and could be reduced to once per day without
affecting anything. During synchronization,
the current will increase, with short spikes
of around 250mA for up to 15 seconds while
the ESP32’s Wi-Fi circuitry is operating. The
AA alkaline cells are rated around 2,400mA-
hours so they should last for 12 or more
hours. Figure 5 is a rear-view photo of the
project in its case. The AA cells are not visible,
because they are mounted on the back cover.

The protoboard I used here is a specialty
board meant to mount on top of a Raspberry
Pi. I had previously mounted the two
MAX98357 DAC/amplifier modules on this
board for a Raspberry Pi project that I had
decided not to pursue. The finished unit is
shown in Figure 6.

SOFTWARE
When I switched to using the Arduino

IDE from Bascom-AVR for my AVR projects,
it was mainly because of the wealth of
libraries available from thousands of Arduino
enthusiasts. It turned out to be a wise
choice, since this IDE has been expanded to
handle many different Arm MCUs, of which
I use Teensy 3.x and 4.0. It also handles
the ESP8266/ESP32—which are not even
Arm-based, but rather Tensilica Xtensa.
(Tensilica is part of Cadence Design Systems.)
Currently, I am using Visual Micro, an add-
on to Microsoft’s Visual Studio. This VM/VS
combination acts as a “wrapper” around the
Arduino C++ toolchain, and provides a much
better programming environment.

For this project, several critical libraries were
needed to handle the task, all of which would
have been difficult to develop on one’s own:

1)	 The SD card library to read the sound data
files from the SD card

2)	 The TFT graphic library for the display
3)	 The I2S DMA-driven library to feed the

DACs
4)	 The NTP library to set/synchronize the

ESP32’s software-driven RTC with network
time

The Arduino SD card library was originally
written for AVR MCUs, but when you add the
ESP32 board package to the Arduino IDE,
you get a custom SD card library written by
Espressif. The TFT touchscreen display uses
an ILI9341 controller chip. Adafruit originally
wrote the Adafruit_ILI9341 library for
the AVR family, and it has been customized
more recently to handle Teensy, ESP8266/
ESP32 MCUs. It calls the Adafruit_GFX
library for its graphics features. Important
Note: My program uses the ESP32’s HSPI port
for the TFT display’s SPI access, whereas the
Adafruit ILI9341 library uses the VSPI port by
default. This change is handled in my code as
follows:

 SPIClass SPI2(HSPI);

And in setup()

SPI2.begin();
tft.begin(0, SPI2);

FIGURE 6
Shown here is the completed unit
mounted in a small enclosure I made
from walnut.

CIRCUIT CELLAR • JANUARY 2020 #35462
CO

LU
M

NS

The above code works fine with version 1.1.0 of the Adafruit_ILI9341 library, but it won’t compile with later
versions, because they have changed something. You must use the Arduino “Sketch - > Include Library - > Manage
Libraries” function to load this older version of the library, if that is not the one you are currently using. The I2S DMA-
driven library is written by Espressif. They use a certain style for their libraries, which differs from many other Arduino
libraries. The Espressif libraries operate under the free RTOS operating system, and the I2S DMA-driven library needs the
following included files:

#include “driver/i2s.h”
#include “freertos/queue.h”

The I2S port is configured by filling up the following two structures:

i2s_config_t i2s_config = {
 .mode = (i2s_mode_t)(I2S_MODE_MASTER | I2S_MODE_TX),
 .sample_rate = 44100,
 .bits_per_sample = (i2s_bits_per_sample_t) 16, //I2S_BITS_PER_SAMPLE_16BIT
 .channel_format = I2S_CHANNEL_FMT_RIGHT_LEFT,
 .communication_format = (i2s_comm_format_t) (I2S_COMM_FORMAT_I2S | I2S_COMM_FORMAT_I2S_MSB),
 .intr_alloc_flags = ESP_INTR_FLAG_LEVEL1, // high interrupt priority
 .dma_buf_count = 8,
 .dma_buf_len = 64, //Interrupt level 1
 .use_apll = (int) 1
};

i2s_pin_config_t pin_config = {
 .bck_io_num = 26, //this is BCK pin
 .ws_io_num = 25, // this is LRCK pin
 .data_out_num = 27, // this is DATA output pin
 .data_in_num = -1 //Not used
};

The I2S port is started up as follows:

i2s_driver_install((i2s_port_t)i2s_num, &i2s_config, 0, NULL);
i2s_set_pin((i2s_port_t)i2s_num, &pin_config);

Since the I2S port is DMA-driven, when you want the sound to stop, it is not enough to just stop filling the DMA buffers.
If that’s all you do, you’ll get a constant buzz coming from the speakers. You must add the following line to de-activate
the DMA driver:

i2s_driver_uninstall((i2s_port_t)i2s_num);

As far as the NTP time synchronization is concerned, I had already done a few earlier ESP8266/ESP32 projects that
needed NTP time synchronization. I didn’t use any library, instead adding all the code needed to do the initial UDP request
and handle the NTP reply. I set the timeserver string variable to time.nist.gov URL and let the ESP32 resolve the IP#
by using:

 WiFi.hostByName(timeServer, timeServerIP);

I thought I’d be clever this time and use a higher-level NTP library that I found on GitHub, which seemed simple to use.
Basically, you just call this routine and pass it your wireless router’s SSID/Password, and it does everything necessary to
synchronize the ESP32’s software RTC. During the many hours spent developing/programming this project, I found that
this NTP library routine didn’t always work, and ultimately it failed to work at all.

Examining the library code, I saw that it used a fixed IP# for the NTP server. From past experience, I knew that the
IP#s of these servers change from time to time, and the method described in the last paragraph was more reliable. So, I
reverted to using my own, “non-library” code, and it has worked well so far. I will say that you do have to wait a bit after
sending an NTP request for the response to come back (if it’s going to), and you also must allow for a number of retries if
you want to be sure of getting a valid NTP synchronization.

The user interface is quite simple. The first time that the ESP32 is powered up after the project code has been loaded,
it will check out the first two bytes of EEPROM for the “0x55, 0xAA” signature. Since the user hasn’t configured the project

circuitcellar.com 63
CO

LU
M

NS

yet, these two EEPROM bytes will instead be
in the default erased state. The program will
then call the configuration routine where it
will ask for:

1)	 The desired Alarm time
2)	 The sound file # (from a list of sound file

names on the display)
3)	 The local time offset from UTC. I don’t

specifically handle Daylight Saving Time
changeover in software, so you must
change this offset twice a year on the
day that the time changes.

These parameters will then be saved to
EEPROM, where they will remain intact if the
unit is powered down by removing both AC
power and the battery.

The user interface consists of the
following:

1)	 Three push buttons
2)	 Menu: To select the configuration menus

listed above
3)	 Enter: to enter the value of the parameter

being modified
4)	 Play: To start/stop the playing of the

relaxation sound. Once started, this will
continue to play until the alarm time is
reached, or the user hits Play again.

5)	 A rotary encoder to adjust parameter
values

6)	 A potentiometer to adjust volume

An SD card must be inserted into the SD
card socket containing at least one sound
file in the .WAV format. When using SD
cards in an MCU-based project, it is always
good practice to format the SD card using
the “SDFormatter” PC application.

CONCLUSIONS
I’ve now built three versions of this

device over 10+ years, all of which worked
well. Since I use it every night, it is one
of my projects that, in addition to being
interesting to build/program, I also use
repeatedly. That’s my justification for
spending the additional time designing the
newer models. I haven’t mentioned that one
of my original goals in building this newest
version was to incorporate a GPS module.
This module would:

1)	 Provide an accurate time (in place of the

external, Web-based NTP server)
2)	 Provide a “local” NTP server that could be

used by several other IoT devices I’ve built
for my home, all of which have an ongoing
need for the correct time/date. Currently
they use the same “external” Web-based
NTP server that this project does.

I was stymied by this part of the project.
An older GPS module that I had in my “spare”
parts bin turned out to be dead. I ordered
a GPS board from Amazon that contained
the common U-blox Neo-6M module and a
tiny antenna with 3” of coax cable. While
I was able to see a lot of NMEA messages
spewing out of it, it only rarely would get
the proper “fix” on enough satellites to
provide the time, never mind my location.
I gave up trying out the unit in a window
with a good “view” of the sky and took the
whole thing outdoors. Even then it worked
horribly. So, I returned it for a refund, and
decided to abandon that part of the project.
I had planned on placing this project a few
feet from a large window, and I doubt that
the inexpensive GPS modules that I was
looking at would have worked properly.

This failed experiment makes me
suspicious when I see TV shows where
someone hides a “GPS” tracker underneath
a car. What kind of great antenna must
those trackers use?

cc-webshop.com

Monte demonstrates how Verilog

hardware description language

(HDL) enables you to depict,

simulate, and synthesize an

electronic design so you can

reduce your workload and

increase productivity.

designing a microprocessor can be easy.
Okay, maybe not easy, but certainly less complicated. Monte
Dalrymple has taken his years of experience designing embedded
architecture and microprocessors and compiled his knowledge into
one comprehensive guide to
processor design in the real
world.

Verilog HDL
With the right tools

www.cc-webshop.com

CIRCUIT CELLAR • JANUARY 2020 #35464
CO

LU
M

NS

L ast month we started our discussion
of field effect transistors (FETs).
Now, let’s expand on the topic. The
FET was patented by Julius Edgar

Lilienfeld in 1926, preceding the invention
of the bipolar junction transistor (BJT) by
some two decades. But the FET was never
constructed, as the necessary technology
wasn’t available at that time.

Let’s start with junction, or JFET structure,
as depicted in Figure 1 with its accompanying
schematic symbols. JFETs come in two
flavors: N-channel and P-channel. The control
electrode called gate is a P-N junction forming
a diode which must be reverse-biased
to achieve the FET’s signature high input

impedance. The reverse-biased gate inhibits
the movement of electrons or holes, based on
whether the channel is of N or P respectively.
At zero bias, as shown in Figure 2, the
maximum drain-to-source current flows. And
because the negative gate bias decreases the
drain current, the JFETs are called depletion-
mode devices.

Analogous to BJTs, FET amplifiers can
also be created in three basic configurations:
Common source, common gate and common
drain—the last also known as a source follower.
Figure 2 plots the drain-to-source current ID
versus drain-to-source voltage VDS with gate-
to-source voltage VGS as a parameter. At some
negative VGS called pinch-off voltage VP the
drain current will be zero. In the ohmic region
the JFET acts as a voltage-controlled resistor:

R V
I gDS
DS

D m

= =
∆
∆

1

 	 (1)

where RDS is the channel resistance and gm is
the FET’s transconductance gain.

JFETs’ dice are smaller than BJTs’. So, the
common source JFETs are often used in the
long-tailed pair configuration in front-end
stages of monolithic op amps. This topology has
very high input impedance and good voltage
gain. Common gate topology can be seen as
the second stage of a cascode amplifier, also

The Consummate Engineer

Semiconductor Fundamentals
(Part 5)

George continues his article series delving
into the fundamentals of semiconductors.
In Part 5, he expands his discussion
of field effect transistors or FETs. He
examines different types of JFETs and
MOSFETs, looking at aspects including
gate architecture and drain-source I-V
characteristics.

By
George Novacek

More on FETs

FIGURE 1
Structure of N-channel JFET and schematic symbols of N and P channel

circuitcellar.com 65
CO

LU
M

NS

analogous to the BJT version with the same
advantages and disadvantages. The source
follower is frequently an integral part of high
resistance sensors—such as the pyroelectric
ones—because it matches their high input
resistance to a low resistance output.

In saturation the IDSS current shows very
little dependence on the drain-to-source
voltage. This makes the design of constant
current sinks and sources easy (Figure 3).
Resistor R adjusts the magnitude of the sink
current which, for R = 0 is the maximum
saturation current IDSS. To set a lower current
the resistor R value is increased. A P-channel
JFET operated at opposite polarities forms a
constant current source.

JFET APPLICATIONS
As shown in Figure 1, JFET is a symmetrical

device, so the drain and source terminals are
interchangeable. This property makes JFET
useful as an analog switch or a voltage-
controlled resistor. Applications include
volume control, voltage-controlled oscillators,
modulators and wherever a variable
resistance is needed. Because of their high
input impedance and small geometry, FETs
also find their use in low noise, high frequency
circuits up to about 30GHz.

Figure 4 is a basic N-channel, common
source JFET amplifier. When setting up its
DC operating point you must remember to
keep the gate electrode negatively biased
with respect to source. Here the gate is
connected to the ground potential VG = 0 and
the source electrode’s potential is raised by
drain current ID through resistor RS to VS, just
as we used to bias triodes. With the working
ID established from the JFET I-V diagram,
you compute resistor values RS and RD to set
VD to approximately (VDD - VS)/2. Of course,
you need to know the JFET characteristics—
unfortunately, specification sheets I have
checked give you very little data—just enough
for designing an analog switch, but nothing
more. You need to do some measurements of
your own.

In the Figure 4 amplifier example I used
J110 JFET with RG= 1MΩ, RS = 470Ω and RD =
1kΩ. The DC operating point of this amplifier
was VS = 2.3V, VD = 7.15V, VG = 0V and VDD =
12V. To obtain a useful AC gain I bypassed RS
with a 100µF capacitor, which resulted in the
gain of 23dB (AV ≈14), - 3dB flat from 26Hz
to 21MHz.

As mentioned earlier, JFETs come as
N-channel and P-channel. The N-channel is
doped with donor impurities and, therefore,
the current through the channel is negative in
the form of electrons. The P-channel is doped
with acceptor impurities and, consequently,
the current through the channel is positive

in the form of holes. Because electrons have
higher mobility than holes, N-channel JFETs
exhibit greater channel conductivity (lower
resistance) than their P-channel counterparts.
The N-channel JFET is more efficient and,
therefore, while available, P-channel JFETs
are not as frequently used.

MOSFETS
The next step is to contemplate the

metal-oxide semiconductor field effect
transistor or MOSFET. Just like bipolar
transistors and JFETs, MOSFETs come as N
and P types. Additionally, each type can be
an enhancement or depletion, so that makes
our MOSFET types. Most digital ICs today—
including microprocessors, microcontrollers,

FIGURE 2
JFET Drain I-V characteristics with VGS a parameter

FIGURE 3
N-channel JFET constant current sink

FIGURE 4
A common source low frequency amplifier

CIRCUIT CELLAR • JANUARY 2020 #35466
CO

LU
M

NS

storage devices and so on—are made using
MOSFET technology. In the ‘70s, purely PMOS
or NMOS ICs had been fabricated, but today
complementary pairs of the N- and P-channel
transistors let us build CMOS devices with
high speed and low power consumption.

The main difference between the JFET
and the MOSFET is that the MOSFET gate is
isolated from the body of the semiconductor
by an oxide insulator. Therefore, an extremely
high input resistance to the tune of 1,012Ω is
obtained. I used such a MOSFET to interface
with an ionization chamber that had a cross-
current around 1-2nA. Because the gate
could be easily destroyed by static electricity
discharge, many MOSFETs have an internal
diode protection, somewhat degrading the
high input resistance.

Figure 5a illustrates the N-channel
enhancement MOSFET structure, Figure 5b
shows the N-channel depletion mode structure.
Notice that MOSFETs have a fourth electrode
called body, bulk or substrate. It is generally
connected to the source potential. Many
MOSFETs have the connection done internally
and no lead outside the enclosure. Also notice
that the substrate-to-drain and substrate-to-
source junctions form intrinsic diodes. With
the bulk usually connected to the substrate,
the substrate-to-source diode is shorted. But
the substrate-to-drain diode is the reason
why the MOSFET drain and source are not
interchangeable. The diodes are shown in the
MOSFET symbols (Figure 6). The P-channel
MOSFET’s structure looks the same, just
the polarities are reversed. The N-channel
enhancement MOSFET, in my experience, is
the most prevalent for switching and digital
applications.

By now MOSFETs have replaced BJTs in
many applications, including communications
reaching up to the many gigahertz. Dual
gate MOSFETs were developed especially
for applications as oscillators, mixers,
multipliers, amplifiers and so forth in RF, VHF,
UHF, microwave and higher frequency ranges.
Both gates affect the operation of the device,
which could be viewed as two MOSFETs in
series. Their respective symbols are shown
in Figure 7. Notice the intrinsic diode is not
always shown in the MOSFET symbol.

A dual gate MOSFET can form a cascode
amplifier overcoming the Miller effect as
discussed previously. The Miller effect relates
to the impedance between the output and the
input, but at high frequencies capacitance is
the predominant factor, potentially leading to
instability. Biasing Gate 2 (also called the drain
gate) at a constant potential, well bypassed to
the ground, eliminates the capacitive coupling
and thus the Miller effect.

The I-V characteristic of depletion MOSFETs

ABOUT THE AUTHOR
George Novacek was a retired president of an
aerospace company. He was a professional
eng ineer wi th degrees in Automat ion
and Cybernet ics. George’s dissertat ion
project was a design of a portable ECG
(electrocardiograph) with wireless interface.
George contributed articles to Circuit Cellar
since 1999, penning more than 120 articles
over the years. George passed away in
January 2019, but we’re grateful to be able
to share with you this, and a couple more
articles he left with us to be published.

FIGURE 5
Cross-section of N-channel enhancement (a) and depletion (b) type MOSFET

FIGURE 6
Shown here are the symbols of enhancement (a) and depletion (b) type N-channel MOSFETs and enhancement
(c) and depletion (d) type P-channel MOSFETs. No bulk terminals are present.

FIGURE 7
Here are the symbols of dual gate enhancement (a) and depletion (b) type N-channel MOSFETs and dual gate
enhancement (c) and depletion (d) type P-channel MOSFETs.

circuitcellar.com 67
CO

LU
M

NS

is similar to that of the JFETs in Figure 2.
Enhancement MOSFETs need some minimum
gate to source voltage to begin to conduct as
seen in Figure 8. Design of an amplifier with
enhanced mode MOSFETs is along the same
lines as described earlier for JFETs. Just the
gate biasing is different. MOSFETs intended
for logic switching applications guarantee
minimum RDS—in other words, the drain-to-
source resistance, often in milliohms, at the
gate voltages less than 5V.

BUILDING BLOCKS
Some readers may think discussing

discrete components unnecessary. Thanks to
the availability of many inexpensive integrated
circuits (ICs) and system building blocks,
circuit design with discrete components
is becoming almost an arcane art. But, all
that said, transistors are the building blocks
of ICs—devices that many make a living
designing. And even if IC design is not in
your future, understanding their underlying
principles can only help with product designs
and troubleshooting.

We’ll complete the series next month with
a look at power MOSFETs and some nearly
exotic components with multiple P-N
junctions.

For detailed article references and additional resources
go to: www.circuitcellar.com/article-materials

FIGURE 8
Drain–source I-V characteristics of an enhancement type N-channel MOSFET

$1000 IN FREE LABOR ON YOUR FIRST ASSEMBLY
GET QUOTE NOW

Speed. Quality. Service.
Find out how we’re different.

Get your discount at ciruitcellar.com/slingshot

http://www.circuitcellar.com/article-materials
www.circuitcellar.com/slingshot

CIRCUIT CELLAR • JANUARY 2020 #35468
CO

LU
M

NS

From the Bench

Shedding Light on
Smart LED Design (Part 1)

I t’s hard to imagine how the Earth could
be illuminated by just the stars and the
planetary bodies in the night sky. This is
like a concert hall or arena being lit just

by cigarette lighters (for you older readers)
or cell phones (for you younger readers).
Two thousand years ago, our ancestors had
no concept of the universe or what was
producing the points of light seen in night
sky. If the moon happened to appear, the
amount of light cast upon the Earth increased
dramatically, depending on its phase.
Unaware that this was reflected light from the
sun, our ancestors knew its light far exceeded
that of the stars and gave the moon its magic
quality. Even with a full moon, this low level of
light causes a problem for our eyes.

Our eye’s retina is made up of rod and
cone cells. Rod cells are sensitive to low light
levels in the green/blue area of the spectrum.
These cells are unable to differentiate colors,
so objects seen in low light appear to be black
or white (shades of gray). The sun brings forth
a blinding light (compared to the night). It was
easy to be in awe of this mighty illumination
that divides the day from the night. No wonder
our ancestors thought of these as gods, lording
over the heavens.

With sufficient light from the sun, three
types of cone cells in the retina take over.
Each type of cone cell responds to a specific
light frequency range. The combination of the
light levels received by each of these cone
cells determines the color of the light being
received in that area. So, the colors we see
are, in fact, made up of the combination of
only three cell outputs—just like the pixels of
an HDTV create the illusion of any color using
only three different colored LEDs (red, green
and blue or RGB). This month we’ll look at the
smart LED, made using RGB LEDs.

LEDS
Electroluminescence, a material’s ability

to emit light in response to the presence of
an electric current, was observe in the early
20th century. Practical LEDs weren’t available
until the 1960s, and even then, only red LEDs
were available. The color produced by an LED
is based on the materials used, and it would
be another 10 years before other colors were
produced with adequate output. The band
gap requirements—energy required to cross
a junction—of each material is different, so
we have different voltage requirements for
each type of LED (Figure 1) [1].

Creating a smart LED design is both challenging and fun. In this
article, Jeff first looks at the history and technology of LEDs, and
then shares the details of his smart LED project based on RGB LEDs.
He introduces a circuit that programs a string of NeoPixel LED strips
to specific colors, and is controlled by push buttons.

By
Jeff Bachiochi

Programming and Pixels

Typical LED Characteristics

Semiconductor
material

GaAs

GaAsP

GaAsP

GaAsP:N

AlGaP

SiC

GalnN

Wavelength

850-940nm

630-660nm

605-620nm

585-595nm

550-570nm

430-505nm

450nm

Color

Infra-Red

Red

Amber

Yellow

Green

Blue

White

VF @ 20mA

1.2V

1.8V

2.0V

2.2V

3.5V

3.6V

4.0V

FIGURE 1
Listed here are some semiconductor materials used to produce an LED’s P-N junction, along with the
wavelengths (colors) emitted and the typical band-gap voltages required [1].

circuitcellar.com 69
CO

LU
M

NS

Today, we have tri-color LEDs available in
both through-hole and surface-mount (SMT)
configurations (Figure 2). If you look closely at
the SMT device in Figure 2, you may suspect
there are more than three discrete LEDs in
this SMT package. While discrete LEDs are
available in SMT, this picture is of a NeoPixel
from Adafruit, the smart LED I’ll be using for
this project. The NeoPixel is the combination of
an addressable IC (WS2811 or similar) and RGB
LEDs. This IC handles the intensity of each of the
three LEDs, based on three 8-bit values shifted
into the device. It has just four connections—
power, ground, and serial in and out. Let’s take
a closer look on how to work with it.

Anyone who has worked with graphics of
any kind is probably familiar with the 24-bit
digital signature used for describing pixel color.
The 24-bits are actually three 8-bit bytes, with
one byte for each of the RGB colors. This means
that you have 8 bits of control over the intensity
of each of the three colors, where 0 is fully OFF
and 255 is fully ON. This 24-bit value is sent in
an RGB sequence, MSB first. Since there is no
external clock necessary, the WS8211 requires
the serial data to conform to a special format
for each bit.

For a bit=0 the TON time must be between
150-450ns, and the TOFF time between 750ns
and 1,050ns. For a bit=1 the TON time must be
between 450-750ns and the TOFF time between
450-750ns. The total time for a cycle (TON +
TOFF) is between 650ns and 1,650ns. A pause
in excess of 50µs ends a sequence. Refer to
Figure 3 for this, and note that the NeoPixel is
designed to allow multiple devices to be daisy-
chained SIN to SOUT.

You must send out 24-bits for each NeoPixel
connected in series. Note that data flow through
each device is 1 bit out for each bit in. So, the
first 24 bits you send out will end up in the last
device in the chain. When a pause in serial data
occurs (greater than 50µs), all devices latch onto
the bits in its shift register. This latched data
will be used to set three PWM outputs to drive
the LEDs. Note here that there is a 500ns delay
between a bit in and a bit out of each device.
The latching of each device’s data is therefore
not synchronized. This will be perceptible only
for very long strings of LEDs, because these
delays add up.

Undoubtedly, you have noticed that the
timing is fairly fast. This is good, because it
allows you to update an entire string of LEDs
quickly. But, it’s also bad, because this shifting
will most likely require blocking other execution
while active. If a bit time is about 1µs, then it
will take 24µs for each NeoPixel and 2.4ms for
a string of 100. That’s a long time to block any
other routine.

Now that I’ve stated the facts as in the
WS2811 sheet, let the truth be told. If you plan

to work with NeoPixels, you’ll want to read Josh
Levine’s WordPress blog [2] on the subject of
bit timing. It seems that as long as you use the
proper ON times, OFF timing can be much more
relaxed, and this greatly improves the ability
of your code to work with other interrupting
sources.

CODING
I decided to give these constraints a test try

by coding only the ON times in an interrupt. The
extra code in the interrupt assures a minimum
OFF time, and additional interruptions in
between bits can extend this OFF time. As long
as this doesn’t exceed the reset time, 50µs, we
should be good. This month’s project uses a
PIC16F1847 from Microchip Technology, which
is an 18-pin flash microcontroller (MCU), and
this circuit will be part of a larger project. This
circuit consists of eight (switch) inputs along,
with one output for driving a string of nine
NeoPixels and a few miscellaneous I/Os for
communications. The schematics are shown in
Figure 4 and Figure 5.

This MCU will run at 32MHz with its internal
oscillator, giving an execution speed of 8MHz or
125ns. Each bit or ON time is coded as a “bsf”
(bit set instruction), some delay and a “bcf” (bit
clear instruction). The delay is different for a “0”
and a “1” bit, and consists of NOPs (no operation
instruction). Note the timing in each of the two
Timer1 routines in the NeoPixel interrupt.

FIGURE 2
Today we can purchase RGB LEDs in
both through-hole and SMT packages.

FIGURE 3
On the left are the timing specs for communicating with the WS2811. The ON time determines the bit’s value.
Data must be sent continuously, until the last daisy-chained device receives the first 24 bits sent. An extended
OFF time latches the present data into all devices.

CIRCUIT CELLAR • JANUARY 2020 #35470
CO

LU
M

NS

FIGURE 5
Schematic of the PIC16F1847 MCU and
communication, programming and
debugging connectors. All parts are
SMT parts except the switches and pin
headers.

FIGURE 4
This schematic shows the
eight input switches and
nine serial NeoPixels for
this month’s project PCB.

circuitcellar.com 71
CO

LU
M

NS

These adhere to the max and min ON times
for NeoPixel bit. While Timer 1 had a 30ns
resolution, it was easier to code two fixed
timing routines than to load the timer and let
the timer count a more exact timing. This would
end up being a totally blocking interrupt, if not
for the relaxed OFF timing. So, I’m just using
the TIMER1 interrupt without actually using its
timing ability! The remaining code must fetch
a byte of data to send, strip off the data bit in
question (MSB to LSB), and set/delay/clear the
output bit, before leaving the routine. A check
after each bit is sent disables the TIMER1
interrupt once all bits have been transmitted.

The NeoPixel data—3 bytes for each of the
nine NeoPixel LEDs—are stored in the proper
sequence as required by the NeoPixel data
format. This makes fetching each byte easy,
using an indirect register move. Picking off the
appropriate bit of each byte is done by rotating
the byte through the carry. The ON time code is
based on the carry, as shown in Listing 1.

A BIT (24 BITS) ABOUT COLOR
The website rgbcolorcode.com [3] offers

a graphic example of how RGB values change
as they are mixed to produce a required color.
You’ll note that a color’s code is different,
depending on whether you are adding light—as
in this project (RGB)—or applying pigments,
as with printing (CMYK). RGB is an additive
process, from no color (black) to all colors
(white), whereas CMYK is a subtractive process
from white (reflecting all colors) to black (no
light reflection).

It’s easy to understand how we can produce
black, white, red, green and blue with LEDs.
Just turn them all ON or, either individually or
collectively. If they are turned ON in pairs, we can
also get cyan, yellow and magenta. Any other
colors require percentages of something other
than zero or 100%. Luckily, the WS2811 LED
driver, discussed previously, uses PWM outputs.
The PWM values are 8-bit and correspond to
color chart values. This allows each LED to be
adjusted to some percentage of full.

PWM values other than 0 or 255 are required
for intermediate colors, such as orange or
brown. Having PWM control also allows any color
to be faded to black, by lowering the values of
the RGB LEDs to zero while retaining the same
color proportions. NeoPixels want to receive the
color values for each LED in a red, green, blue
sequence, so the table’s 27 consecutive memory
locations are defined as R, G and B for each of
the LEDs 1-8.

SWITCH INPUTS
For now, I’ll be using each of the eight

switches to set the nine LEDs to a different color.
This will test out both the switches and the
NeoPixels. So, let’s look at those switches. The

MCU requires certain functions to be on specific
pins, so it’s not unusual that the leftover pins,
used as switch inputs, are not on the same port.
The first order of business is to gather the state
of each input into a single byte, where switches
1-8 correspond to bits 0-7 of the register,
NewSwitch. A second register, LastSwitch, will
retain the previous sample’s switch states
(originally initialized to 0xFF).

A byte of 0xFF means that all switches
are “not pushed.” When a switch is pushed,
it pulls its input to ground, and samples as
a “0.” By comparing these two registers
(XORed), we can determine if any switch has
changed state. By comparing this value with
NewSwitch (ANDed) we can eliminate the
push changes, keeping only those changes
due to releasing a switch. The complement of
this will be indicated with a “0” any key that
has been released since the last sample. This
is combined (ANDed) with COSSwitch, which

LISTING 1
TIMER1 interrupt routine handles the timing of each bit to the NeoPixels. The ON time is controlled by hard
coding NOPs for each one-instruction cycle delay. An instruction cycle is 32MHz /4 = 125ns.

 btfss STATUS, C ; skip next if carry=1
 goto TIMER1_0
;
TIMER1_1
 bsf LATB, Sout
 nop ; 125ns
 nop ; 250ns
 nop ; 370ns
 nop ; 500ns
 bcf LATB, Sout ; 625ns
 goto TIMER1_Continue
;
TIMER1_0
 bsf LATB, Sout
 nop ; 125ns
 nop ; 250ns
 bcf LATB, Sout ; 375ns
 goto TIMER1_Continue
;
TIMER1_Continue

ABOUT THE AUTHOR
Jeff Bachiochi (pronounced BAH-key-AH-key)
has been writing for Circuit Cellar since 1988.
His background includes product design and
manufacturing. You can reach him at:
jeff.bachiochi@imaginethatnow.com or at:
www.imaginethatnow.com.

mailto:jeff.bachiochi@imaginethatnow.com
http://www.imaginethatnow.com

CIRCUIT CELLAR • JANUARY 2020 #35472
CO

LU
M

NS

keeps a running tally of any changes.
While we have both I’s and O’s to deal

with, no actual work will be done here, other
than sampling the status of the switches and
setting the color of each LED, based on the color
table. What to do with the switch status and
what colors to set each LED will be handled
by a second circuit. So, we’ll need to set up a
communications interface.

The SPI port will be used as a slave device
for communication with another circuit. The
UART will serve as a debug port for messages.
The UART could be connected to an LCD or a
PC to display messages about the status of this
device. Which switch was just released? What
SPI data are being received from a master? What
is the bitstream going to the NeoPixels? While
none of this is necessary for the operation, my
coding mistakes are easier to find when I have
good feedback about what’s actually happening
inside this black box.

I’ve started this project with the I/O slave

device, and have not yet produced a master
device. So how can I test this part of the project?
I can use the trusty Arduino as a master device,
and write a simple program to collect switch
information and set the color table through
the Arduino’s SPI port. This project will use
multiple slave devices, so I’m going to make
use of the slave select (SS) line to choose which
slave device I want to communicate with. I
could have chosen to use I2C for inter-board
communication, in which case each device
would require a separate address. While SPI
requires more than the two signal lines of I2C,
each slave device has its own slave select input,
so the code can stay identical for each without
having to assign a different address to each
slave device.

TESTING 1, 2, 3, 4...
The master provides a clock for the SPI shift

register in each device. SPI communication
transfers a byte in both directions at the same

LISTING 2
Code listing showing the SPI transfers

int writeSwitchStatusCommand()
{
 // take the chip select low to select the device:
 digitalWrite(chipSelectPin, LOW);
 // send the device the 6-bit address register you want to write to, receive switch status
 int result = SPI.transfer(0x00);
 // send the value you wish to write to the addressed register, receive dummy
 SPI.transfer(~result);
 // take the chip select high to de-select:
 digitalWrite(chipSelectPin, HIGH);
 // return the result:
 Serial.println(“Received “ + String(result,HEX));
 return (result);
}

void writeLEDColorTableCommand()
{
 // take the chip select low to select the device:
 digitalWrite(chipSelectPin, LOW);
 // send the device the 6-bit address register you want to write to, receive switch status
 SPI.transfer(0x01);
 for(int i=0; i<9; i++)
 {
 Serial.print(“LED” + string(i+1));
 for(int j=0; j<3; j++)
 {
 // send the value you wish to write to the addressed register, receive dummy
 SPI.transfer(FaceArray[(i*3)+j]);
 Serial.print(“,”);
 Serial.print(FaceArray[(i*3)+j],HEX);

 }
 Serial.println();
 }
 // take the chip select high to de-select:
 digitalWrite(chipSelectPin, HIGH);
}

circuitcellar.com 73
CO

LU
M

NS

time. How the data are used is entirely up to you.
I found a resource from ST Microelectronics that
explained a simple protocol they use for some
of their products [4]. The first two MSBits (most
significant bits) indicate one of four modes of
operation: Read, Write, Read and Clear Status,
and Read Device Information. The last 6 bits
indicate a register number. With this protocol, I
could individually change any of the 27 registers
used in the LED1:8 color table. At this point, I
think I only need to write data, but it won’t hurt
to follow this suggested protocol.

Because data moves in both directions at
the same time, you can see that a slave can’t
possibly know what to send before a request is
made (the slave receives a command), so there
will be times when “dummy” data is sent just to
fill the gap. After sending a “read” command,
the master must send a dummy byte to allow
the slave to respond with the data and clock it

back to the master.
There is only the time between clock cycles

to determine which register is requested and
transfer it into the SSP1BUF register, before the
master’s clock begins shifting data out. This is
not an issue when a slave device like an EEPROM
has the hardware to handle it. But when the
slave is a software device, there is code to
execute. These data might be unobtainable in
the required time frame, because the master
doesn’t idle between bytes. You may need to
expand your protocol by 1 byte to allow for
this. The master might need to send 3 bytes:
request, dummy, dummy. The slave would send
dummy (while waiting for the request), dummy
(while it processes the request) and then the
data.

In this case I can make use of the first
exchange by always loading the switch status
into the SPI buffer before the beginning of

LISTING 3
As shown here, each bit position 0-7 (switches 1-8) has been assigned a color: black, red, orange, yellow, green, blue, violet and white.

//**************************************
// request switch status
// if a switch bit = 0, then fill
// the array with the appropriate color
// pause
//**************************************

void loop()
{
 switches = writeSwitchStatusCommand();
 if (!(switches & 1))
 {
 if(debug&1)
 {
 Serial.println(“Switch 1”);
 }
 Fill(Black);
 }
 if (!(switches & 2))
 {
 if(debug&1)
 {
 Serial.println(“Switch 2”);
 }
 Fill(Red);
 }
 if (!(switches & 4))
 {
 if(debug&1)
 {
 Serial.println(“Switch 3”);
 }
 Fill(Orange);
 }
 if (!(switches & 8))
 {
 if(debug&1)
 {				 (continues)

(Listing3 continued)
 Serial.println(“Switch 4”);
 }
 Fill(Yellow);
 }
 if (!(switches & 16))
 {
 if(debug&1)
 {
 Serial.println(“Switch 5”);
 }
 Fill(Green);
 }
 if (!(switches & 32))
 {
 if(debug&1)
 {
 Serial.println(“Switch 6”);
 }
 Fill(Blue);
 }
 if (!(switches & 64))
 {
 if(debug&1)
 {
 Serial.println(“Switch 7”);
 }
 Fill(Violet);
 }
 if (!(switches & 128))
 {
 if(debug&1)
 {
 Serial.println(“Switch 8”);
 }
 Fill(White);
 }
 delay(100);
}

CIRCUIT CELLAR • JANUARY 2020 #35474
CO

LU
M

NS

then be used to update the NeoPixels. Listing 2
shows the code to handle these two transfers.

Our circuit samples the switches while its
idle. Any button pushed and released is added to
the switch status register COSSwitch as a zero
in the appropriate bit position (switch 1-8 = bits
0-7). The Arduino’s loop function begins with a
request of the switch status. It receives this by
using the command 0x00 (write to address 0).
Each bit position 0-7 (switches 1-8) has been
assigned a color: black, red, orange, yellow,
green, blue, violet and white. When a zero is
found in a bit position, the fill routine is called
with the bit’s associated color palette. Then the
function ends with a short delay before looping
back (Listing 3).

The Fill(long grb) function breaks the
32-bit value into 4 bytes (Listing 4). The MSByte
(most significant byte) isn’t used, but the second
byte becomes the red color value, the third the
green and fourth the blue palette values for that
particular color. An array that holds the 3 color
bytes for each of the nine LEDs is filled with that
color. There isn’t any reason each LED couldn’t
have a different color.

This array is used by the
writeLEDColorTableCommand() function to
update our PCB via SPI, with data for its LED
Color Table. When our board receives these
27 bytes, it stores them in the LED Color
Table and produces NeoPixel serial data to
update the nine LEDs with new color data.

It took longer to wire up a 6-pin connector to
the Arduino than it did to write this simple test
program. That’s what I like about the Arduino—
it makes a great testing vehicle. Each switch
will, in turn, change all the NeoPixels to their
particular colors (Figure 6).

THE BIGGER PICTURE?
This column introduced a circuit that will

program a string of nine NeoPixels to specific
colors, based on receiving SPI data from some
master SPI device. In addition, the circuit has
eight push buttons that are constantly scanned
for user presses. Switch status is reported to
the master SPI device when it is requested.
In our test case, the master merely sent data
to change all LEDs to a particular color, based
on the switch status. Remember—this is just
a small part of a larger conglomeration, which
will replace an inexpensive and simple, yet
perplexing, curio with a pricey technology-
ridden one.

I’ve designed using the SK6812 or WS6812 in
its IC form, however these are also available pre-
mounted on flex circuit and sold by the meter
(Figure 6). I don’t want to give too much away
here, so I’ll leave you with something to think
about. Put on your Sherlock Holmes “deerstalker,”
and see if you can figure it out before next
month. Too much to learn, so little time.

any communications—normally a wasted dummy byte from the slave. If we can
receive switch status on every transfer, we only need to be able to write data
to the slave. A command of “0” would be a write to address “0” (switch status
register). One additional byte includes the data to write to the slave. This byte will
be the complement of the switch status it just received, and will then be IORed
with COSSwitch (switch status register) to reset (and acknowledge) the status. A
command of “1” would be a write to address “1” (LED color table start). This would
be followed by (27) bytes to fill the LED Color Table, and that table’s data would

Additional materials from the author are available at:
www.circuitcellar.com/article-materials
References [1] through [4] as marked in the article can be found there.

RESOURCES

Adafruit | www.adafruit.com

Microchip Technology | www.microchip.com

ST Microelectronics | www.st.com

FIGURE 6
Prototype of this month’s circuit in operation

LISTING 4
The Fill(long grb) function breaks the 32-bit value into 4 bytes.

//**************************************
// fill array of bytes with color grb
// then send array using SPI
//**************************************
void Fill(long grb)
{
 for (int i=0; i<9; i++)
 {
 //Serial.println(grb,HEX);
 int x = grb/0x10000;
 FaceArray[i*3] = x;
 //Serial.println(x,HEX);
 int y = (grb - (x * 0x10000)) / 0x100;
 FaceArray[(i*3)+1] = y;
 //Serial.println(y,HEX);
 int z = grb - (x * 0x10000) - (y * 0x100);
 FaceArray[(i*3)+2] = z;
 //Serial.println(z,HEX);
 }
 writeLEDColorTableCommand();
}

http://www.circuitcellar.com/article-materials
http://www.adafruit.com
http://www.microchip.com
http://www.st.com

www.cc-webshop.com

CIRCUIT CELLAR • JANUARY 2020 #35476
PR

O
D

U
CT

 N
EW

S

PRODUCT NEWS

Embedded Toolchain for Arm Provides Integration with AWS
IAR Systems has launched a new edition of IAR Embedded Workbench for Arm that provides integration with Amazon Web

Services (AWS). IAR Embedded Workbench for Arm, AWS edition, provides developers with the possibility to log in to an AWS
account from within the C/C++ development toolchain IDE. During debugging, they are
able to access the TCP/IP interface, see the status of MQTT packages and inspect the
device shadow for complete control from device to cloud. The cloud communication with
AWS IoT Core can also be inspected and controlled by subscribing to AWS topics and
publishing commands, says IAR Systems.

The toolchain also provides support for the IoT Realtime Operating System, Amazon
FreeRTOS. Based on the FreeRTOS kernel, Amazon FreeRTOS includes software libraries
which make it easy to securely connect devices locally to AWS Greengrass, or directly
to the cloud, and update them remotely. For new devices, developers can choose to
build their embedded and IoT application on a variety of qualified microcontrollers from
companies collaborating with AWS and IAR Systems, including NXP, STMicroelectronics
and Texas Instruments.

IAR Systems | www.iar.com

2,000W Modular Power Supplies Offer Full MoPP Isolation
TDK has announced its TDK-Lambda brand QM8B modular power supplies rated at up

to 2,000W. This further extends the QM series which can provide 550W to 2,000W output
power. The QM8B models are available with up to 18 outputs, have full MoPP (Means of
Patient Protection) isolation and low acoustic noise. With medical and industrial safety
certifications, the power supplies are suitable for use in medical, test and measurement,
communications and broadcast equipment. This avoids the need for multiple power
supplies in systems requiring a large number of independent voltages.

Accepting a wide range 90 to 264Vac, 47-63Hz input (440Hz with reduced PFC), the
QM8B can deliver 1200W at low line and 2000W with a high line 180-264 Vac input. With its
modular construction, the series can be configured using a simple on-line configurator to provide 1 to 18 independently regulated
outputs and include individual output good signal and remote on/off functions. The QM series module output voltages range from
2.8V to 105.6V and have output power levels from 300W to 1200W. Overall case dimensions for the QM8B are 200mm × 63.3mm
× 268 mm (W x H x D). The QM8B will operate in ambient temperatures of -20 to +70°C (-40°C start-up), with output power and
output current linearly derating above 50°C to 50% at 70°C.

TDK-Lambda | www.tdk-lambda.com

UI Software Framework for STM32 MCUs Gets Upgrade
STMicroelectronics (ST) has updated the TouchGFX user-

interface software framework for STM32 microcontrollers,
adding new features that enable smoother and more dynamic
user interfaces and lower demand on the memory and CPU.
TouchGFX is a free tool in the STM32 ecosystem. Comprising

two parts—TouchGFX Designer PC tool for designing and
configuring rich user interfaces, and TouchGFX Engine software
that runs on the end-device to secure high UI performance—
the latest version 4.12 contains updates to both. Users can
now build sophisticated user interfaces on one-chip display
solutions without external RAM or flash, save power for longer
battery life and benefit from easier development to get to
market faster.

In TouchGFX Engine, a partial framebuffer mode now allows
the buffer to operate using as little as 6KB of RAM. A fully
functioning user interface can now have just 16KB of RAM,
so that small STM32 MCUs can deliver great user experiences
without external memory. The updates to TouchGFX Designer
include extensions to the powerful set of customizable widgets,
adding features such as Scale and Rotate that increase the
power of simple drag-and-drop programming. The complete
TouchGFX Suite, including TouchGFX Designer and TouchGFX
Engine, is available to download free of charge from
www.st/com/touchgfxdesigner.

STMicroelectronics | www.st.com

http://www.tdk-lambda.com
http://www.st/com/touchgfxdesigner
http://www.st.com
http://www.iar.com

circuitcellar.com 77

TS-7250-V2

Single Board Computer

1GHz ARM Computer with
Customizable FPGA-Driven

PC/104 Connector
and Several Interfaces

at Industrial Temp

www.embeddedARM.com

IDEA BOX
The Directory of
PRODUCTS & SERVICES

AD FORMAT:
Advertisers must furnish digital files that meet our specifications (circuitcellar.com/mediakit).

All text and other elements MUST fit within a 2" x 3" format.
E-mail adcopy@circuitcellar.com with your file.

For current rates, deadlines, and more information contact
Hugh Heinsohn at 757-525-3677 or Hugh@circuitcellar.com.

Surplus & New Parts & Supplies
Since 1967

Discount Prices
Fast Shipping

LEDS . CONNECTORS . RELAYS
SOLENOIDS . FANS . ENCLOSURES
MOTORS . WHEELS . MAGNETS
PC BOARDS . POWER SUPPLIES
SWITCHES . LIGHTS . BATTERIES
and many more items...

We have what you need for your next project.

SERVER TEST

PIC
® M

C
U

 is a registered tradem
ark of M

icrochip Technology Inc.

Kit Includes a Full-Featured Single-Chip IDE
C Compiler and an LCD Development Kit

sales@ccsinfo.com 262-522-6500 x 35

www.ccsinfo.com/CC120

Revenue Control
 Systems PnP

- Pick & Place Machines starting @ $6,250
- Direct U.S. Sales, Support, Training,
 Parts, Accessories, Warranty
- PCB Fabrication Equipment
- Makerspace Specials
- Reflow Ovens
757-258-0910
RCSPnP.com

http://www.ccsinfo.com/CC120
http://www.embeddedARM.com
mailto:adcopy@circuitcellar.com
mailto:Hugh@circuitcellar.com
mailto:sales@ccsinfo.com
www.circuitcellar.com/mediakit
www.allelectronics.com
www.RCSPnP.com

CIRCUIT CELLAR • JANUARY 2020 #35478
TE

ST
S

YO
U

R
EQ

TEST YOUR EQ
Contributed by David Tweed

Problem 1— The following code for a Microchip (formerly
Atmel) ATmega328 is intended to scan a 3×4 keypad and
return a code indicating which key, if any, is pressed.
However, there’s a bug in it. Can you spot it?

#define KEYPAD A
#define KEYPAD_PORT PORT(KEYPAD)
#define KEYPAD_DDR DDR(KEYPAD)
#define KEYPAD_PIN PIN(KEYPAD)

uint8_t GetKeyPressed()
{
 uint8_t r, c;
 KEYPAD_PORT |= 0X0F;
 for (c=0; c<3; c++) {
 KEYPAD_DDR &= ~(0X7F);
 KEYPAD_DDR |= (0X40>>c);
 for (r=0; r<4; r++) {
 /* If keys pressed, return code 0-11.
 */
 if (!(KEYPAD_PIN & (0X08>>r))) return
(r*3+c);
 }
 }

 /* No keys pressed, return special code.
 */
 return 0XFF;
}

Problem 2— You are given a design task in which
there’s a digital signal carrying pulses at a rate of 1Hz
to 100Hz. The requirement is to produce a logic signal
that is high when the input pulse rate falls between
40Hz and 60Hz. The goal is to come up with the simplest
circuit that can do this—preferably without using a
microcontroller or anything other than commonly
available SSI/MSI logic parts.

Problem 3— Can you think of any other applications
for such a circuit?

Problem 4— The original Zilog Z80 microprocessor
had about 8,500 transistors, and was produced with a
minimum feature size of about 6 microns. If it were
manufactured using modern 7nm transistors, how small
would it be?

www.cc-webshop.com

circuitcellar.com 79
TECH THE FUTURE

Safer Living Through
AI and IoT

By
Jen Bernier-Santarini,
Adesto

The Future of IoT as Safety Resource

T he world is increasingly afflicted by natural disasters.
Almost every day we turn on the news to see fires, floods,
hurricanes, tsunamis and other storms striking yet another
major population center. By now, many of us—or our families

and friends—have been personally affected. And while in most cases we
can’t yet prevent these occurrences, we can begin to better prepare for
them and mitigate damage.

Disaster management is a very real area of research that predates
much of today’s technology, and is one that is eager to embrace its
potential. Experts in this area proffer three key pieces of advice:
take measures to mitigate potential damage, implement means for
immediate victim assistance and plan for rapid recovery. While these
pieces of advice were probably originally conceived at a time when the
main actors in disaster management would be people, technology can
and is now helping with all three.

In some ways, huge trends, such as AI, the IoT and Big Data, have
the intensity of natural phenomena, but they have the potential to be
forces for good. We can now use technology to spread alerts faster
than ever before, ensuring people living in areas of risk can be better
prepared to take evasive action should the need arise. Smart sensors
can now supply the raw data needed to detect potential threats sooner,
and high-speed networks can deliver sensor data to server farms where
AI can crunch the numbers to find patterns that match threats.

GLOBAL IMPACT
But there is much work to be done. The global financial impact

of natural disasters has been estimated at more than $300 billion a
year and climbing, with some estimates much higher when taking
downstream impacts into account. Unfortunately, according to the
United Nations 2019 Global Assessment Report on Disaster Risk
Reduction (GAR2019) [1], today’s
international development financing
system allocates approximately 20
times the funding to emergency
response, reconstruction, relief and
rehabilitation activities compared to
that allocated for disaster prevention
and preparedness.

So how will IoT technologies help
with prevention and preparedness?
The IoT is pervasive, and its technology
is becoming less expensive, which
makes endpoints like smart sensors
more cost-effective and relatively
easy to deploy (Figure 1). In terms
of early warning systems, we
can expect more raw data to be
generated in areas prone to natural
disaster through various sensors to

FIGURE 1
The IoT is pervasive and its technology is becoming less expensive. That’s making endpoints like smart sensors
more cost-effective and relatively easy to deploy.

80 CIRCUIT CELLAR • JANUARY 2020 #354
TE

CH
 T

HE
 F

UT
UR

E

measure earth tremors, monitor sea levels, measure carbon
monoxide/dioxide levels, monitor temperature and moisture
levels and more. Changes in such elements can forewarn us
of imminent danger.

The data generated by each of these sensors is the key.
According to the GAR2019 report, today data collection is
“…often fragmented, non-universal, incommensurable and
biased, and the disconnect among ‘knowing’ something,
making it ‘available and accessible’ and ‘applying’ what is
known, often remains.” We see this same macro issue at
work in local environments where IoT sensors are being used
by municipalities and companies to gather data from various
systems to create better living for citizens and employees.

Growing populations across the world are increasingly
migrating to cities—many of which are rapidly turning into
megacities with populations greater than 10 million people.
In this environment, access to data becomes fundamental to
safer living. In today’s cities, IoT technology can approximate
how long it will take us to drive across the city, warn us of road
accidents, map our route, and help us find a parking space.

But as populations in urban areas increase, the
disproportional gulf between cause and effect will become
more apparent. For example, road traffic incidents may be
attributable to a build-up of traffic in another part of the city,
or the lack of adequate lighting on a particular street. More
densely inhabited areas may generate greater potential for
incidents, because the margins for error will be eroded. If
one person takes a different route home it makes little or no
difference to congestion; if a hundred people do it, roads can
become gridlocked.

This is where the integration of disparate systems and
use of AI will make all the difference. In the future, real-time
data, forming seemingly incoherent patterns, will be easily
analyzed by AI technologies to make traffic flow better, or
reduce the potential of hazards for pedestrians and cyclists.
And it will happen behind the scenes, without us having to
make a conscious effort to change our natural behavior. Right
now, the systems to make this work aren’t seamless. These
systems, even those that are connected to the internet, often
exist in isolated silos.

SMART BUILDING EXAMPLE
Take a smart building as an example. Within a building,

the access control systems, HVAC systems, lighting systems,
elevators and other systems may all be “smart” in that they
automatically turn on when needed, turn off when they aren’t
needed, can be monitored and adjusted remotely, but they
are generally disconnected from each other. It won’t be much
use during an emergency if a building’s emergency lights turn
on, but the doors remain locked.

The reason for the disconnect is largely a legacy issue: there
are so many different, un-interoperable protocols, devices and
services used in existing building management systems and
other industrial control systems, that integration has become
a real issue. Where these systems are able to connect and work
together today, it often takes vast sums of money to fund the
integration effort. What we need are simple, cost-effective
ways to bridge legacy systems to new IoT systems to let us
make use of the valuable data that the systems generate.

The SmartServer IoT from Adesto is designed to address
this issue. It makes it easier to access the wealth of data
an industrial control system may hold, to enable new
solutions that could make a real difference to peoples’ lives.
With SmartServer IoT, companies can easily connect their
disparate, non-interoperable systems, devices, and services
together and also connect to cloud platforms to make use of
AI and predictive analytics—which can be used to understand
trends and mitigate risks (Figure 2).

Natural disasters are potentially predictable, and
manufactured incidents are often avoidable. Both rely on
being able to observe, analyze and react to the world around
us. And while global natural-disaster risk mitigation will
require mega political, socioeconomic and cultural discussions
and change, the AI and IoT technologies that can enable this
change are increasingly available.

Today’s technology means that we are now more equipped—
through data—to defend ourselves, our homes and our
possessions from harm. In the future, by bringing disparate
systems together and making existing solutions more extensible,
we can build even smarter and safer communities.

For detailed article references and additional resources go
to: www.circuitcellar.com/article-materials
Reference [1] as marked in the article can be found there.

RESOURCE
Adesto Technologies | www.adestotech.com

Jen Bernier-Santarini is VP of Corporate Communications at
Adesto, a provider of application-specific semiconductors and
systems for IoT. Before joining Adesto in 2019, Jen led technol-
ogy communications for IP provider Imagination Technologies.
With more than 25 years working in semiconductors and related
technologies, her expertise includes electronic design automa-
tion (EDA) tools, connectivity technologies, processors and IP,
flash memory and other off-the-shelf chips.

FIGURE 2
SmartServer IoT system diagram

http://www.circuitcellar.com/article-materials
http://www.adestotech.com

www.PCB4u.com sales@PCB4u.com

Technology:
Up to 50 Layers
Any Layer HDI
Sequential Lamination
Blind / Buried Vias
Laser Drilling / Routing
Heavy CopperHeavy Copper

Materials:
Fr4
Metal Core
Isola
Rogers
Polyimide - Flex
MagtronMagtron

CLEARED FOR

CUSTOMS
FR OM AIW
A

T
N

NO
TARI FF S

www.PCB4u.com sales@PCB4u.com

Technology:
Up to 50 Layers
Any Layer HDI
Sequential Lamination
Blind / Buried Vias
Laser Drilling / Routing
Heavy CopperHeavy Copper

Materials:
Fr4
Metal Core
Isola
Rogers
Polyimide - Flex
MagtronMagtron

www.PCB4u.com
mailto:sales@PCB4u.com

FROM THE DEEP BLUE SEA
TO THE WILD BLUE YONDER

The TS-7680 is designed to provide
extreme performance for applications demanding

high reliability, fast boot-up/startup, and
connectivity at low cost and

low power. Because there are so many features packed
on to one single board computer you will see a

 reduction in payload weight since there is no need for
additional boards, micro-controllers, or peripherals.

Rated for industrial temperature range of -40°C to +85°C
 the TS-7680 is deployed in �eet management,

pipeline monitoring, and industrial controls
and is working in some of the most demanding

places on Earth.

The TS-7680 will help you perform at your
very best in a variety of critical missions.

 Qty 100

Low Power Industrial
Single Board Computer with

WiFi and Bluetooth

$159

TS-7680

www.embeddedARM.com

