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INPUTVoltage

Jeff Child

W hile I was an engineering student 
in college—back when dinosaurs 
roamed the Earth—I didn’t have a 
lot of free elective slots. Because 

most of you Circuit Cellar readers are engineers, you 
can probably relate. But I did manage to fit in an 
elective course about the philosophy of technology. 
Whether it was the engineer in me or the nerd in me, 
I’ve always had an interest in “looking under the hood” 
or “behind the scenes” at the underlying meaning of 
things, and of words in particular. One thing that stuck 
with me from that course was the notion that the word 
technology when you break it down means “the science 
of technique.” For me that phrase has a nice ring to it.

Particularly in the past decade or so—as technology 
has become a part of everyday consumer life—the 
shortcut term “tech” has emerged as a cool replacement 
for “technology.” I’ve always bristled at that, especially 
as it became clear that the word “tech” tends to be used 
more frequently by those that don’t have any clue about 
how electronic circuits and computing systems work. 
And by leaving off the “-ology” they are leaving off the 
“science of” part, which, to me, is the important bit.

The result of all this is that I’ve tended to be 
stubborn about not using the shortcut term “tech” in 
either writing or in conversation. That’s easier said 
then done when trying to keep headlines short, and I’ve 
softened my stance about it in recent years. In an era 
when boosting website SEO requires a certain amount 
of conciseness, one must adapt.

Now that I’ve gotten that off my chest, I’ll turn a 
technology (wink) that is definitely well positioned to be 
a key “under the hood” winner: RISC-V. As a free and 
open instruction set architecture, RISC-V has shaken 
things up in the processor realm by offering an ISA 
that everyone can use without paying a license fee. 
The RISC-V specification enables custom instruction 
extensions to facilitate the design of Domain-Specific 
Architecture/Acceleration (DSA). These are important 
for applications such as Artificial Intelligence/Machine 
Learning, AR/VR, ADAS and next generation storage 
and networking.

The timing of this magazine’s production is such 
that I’m not able to report on the 2019 RISC-V Summit 
that took place in early December. Judging by progress 
made in the RISC-V ecosystem throughout 2019, I’m 
sure there were many interesting developments. 
Instead, I’ll talk about the market trends in RISC-V. 
In November, Semico Research released a new report 
“RISC-V Market Analysis: The New Kid on the Block” that 
estimates that the market will consume a total of 62.4 
billion RISC-V CPU cores by 2025, with the industrial 
sector forecasted to be the largest segment with 16.7 
billion cores. Forecasting the compound annual growth 
rate (CAGR) for RISC-V CPU cores, Semico estimates 
that segments including the computer, consumer, 
communication, transportation and industrial markets 
will see a 146.2% percent CAGR on average between 
2018 and 2025.

In its forecast of the CAGR for RISC-V CPU cores 
between 2018 and 2025, Semico estimates that the 
communication sector will see the largest CAGR 
due to the deployment of 5G and the multitude of 
products and applications that will be enabled with 
the adoption of 5G technology. Transportation is 
estimated to have the second-fastest CAGR due to the 
automotive industry’s growing focus on electrification 
and the increased adoption of CPU-based systems for 
safety, in-cabin experiences, driver assistance and 
wireless communications. Semico not only found that 
organizations are designing RISC-V solutions across a 
variety of performance and volume applications, but 
also that they’re designing anywhere from one or two 
to more than 1,000 cores in SoCs.

RISC-V is compelling technology for engineers to 
design into products—products that end customers are 
free to call “tech” if they so choose. 

The Science of Technique
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O ur Motion-Controlled Speaker 
project is an application that 
uses non-contact sensors to 
control the audio output from a 

speaker, based on motion patterns that the 
sensors detect. This project idea originated 
when we began discussing innovations that 
would be of interest to us. We immediately 
took a liking to this idea, because we could 
see it being implemented into products in the 
near future. We all have personal interests in 
music and in working on something that could 
be built into different products, such as smart 
watches or other similar smart products with 
streaming capabilities. Our objective was to 
build a prototype of this type of technology, 
using Sharp GP2Y0A21YK0F IR sensors from 
Pololu, the PIC32 microcontroller (MCU) and 
another main component that would be based 
on whether we decided to stream the music 
or to play downloaded music from a device 
with memory.

After much research and trying out various 
methods, we decided to use a Raspberry Pi 3B 
embedded computer board as a device for the 

playback of songs. The final product, using 
the IR sensors, PIC32 and Raspberry Pi 3, was 
a working prototype that was able to pause 
and play songs, turn the volume up and down 
and change to the previous and next songs—
solely based on hand motions. The schematic 
of the project is shown in Figure 1.

HIGH-LEVEL DESIGN
A significant logical part of our project was 

the communication between the Raspberry Pi 
and the PIC32 MCU, through the utilization of 
the UART hardware on each device. The serial 
port between the two was set up at a baud 
rate of 115200 bps—the fastest speed that the 
serial port can transfer data between the two 
computers. There was an optimization trade-
off that we had to consider. We knew that 
using this baud rate allowed us to send the 
greatest amount of data at a fast enough rate, 
but with a higher chance of data corruption or 
data loss. Fortunately, we didn’t observe any 
of these errors, so we chose to continue using 
the highest speed possible.

The baud rate is the speed at which bits 

Controlling electronic devices with hand gestures may seem like the stuff of science fiction. 
But the technology is easily available today, even for MCU-level embedded systems. Learn 
how these three Cornell students built a motion/gesture-controlled speaker using sensors, 
a computer and a Microchip PIC32 MCU. With hand gestures, the system lets you control 
the volume, play/pause and change songs by skipping forward and backward.

PIC32 Playback

By Jidenna Nwosu, Benjamin Francis and Ayomi Sanni

Motion/Gesture-Controlled 
Speakers
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can be transferred, so bytes of data can be 
sent at a maximum rate of 11,500Hz. With that 
in mind, we had to downsample most tracks 
of music, which originally were sampled 
at a rate of 44,100Hz. We used Mathworks 
MATLAB code provided by a Cornell professor 
to downsample the tracks to a quarter of 
that frequency, or 11,025Hz, which was the 
greatest rate we could obtain that was below 
the maximum. This decreased the quality of 
the relayed music, but it was still clear and 
enjoyable.

The structure of our project is as follows: 
The first part is resetting the PIC and running 
our code on the Raspberry Pi 3. Once the PIC 
has finished resetting, it sends a ready signal 
to the Pi. The Pi receives this signal and then 
begins to process and send the music data 
that has been prewritten onto it, byte by 
byte. These bytes are received by the PIC and 
stored into two buffers, where one receives 

the data, and when full, starts playing. 
While this buffer is playing, the other buffer 
continues receiving data where the previous 
left off. When one of the buffers is full, it 
sends a signal that it is ready to receive more 
data. Figure 2 is a logical structure diagram 
illustrating this process.

We made sure to follow the typical multi-
processor communication protocol that was 
relevant for our purposes. Because we were 
using the UART hardware present on the PIC 
and the Pi, we followed the RS-232 standard. 
Unlike other motion-activated audio emitters, 
our project is more focused around using 
specific motions to control a sound or music 
playback device, with different patterns of 
motion producing different results.

HARDWARE DESIGN
The PIC32 does not have enough memory 

(only 128KB of flash memory) to store full 

FIGURE 1
Schematic for our Motion Sensor Speaker system
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songs. So, we used the Raspberry Pi 3 
to store music and stream to the PIC32, 
because its memory is limited only by the 
size of its memory card, and it is also a high-
performance device for its price. The serial 
communication between the PIC and the 
Raspberry Pi required connecting the UART 
transmit pin on the PIC to the UART receive pin 
on the Raspberry Pi and vice versa. We also 
ensured that they share a common ground.

This sensor array acts as the interface 
between a user and the music streaming 
system that we designed. We screwed the 
sensors to a small rectangular wooden board 
to keep them stable and make it easy to 
control the program using hand gestures. 
We assembled the sensors in a diamond 
formation (Figure 3). This formation makes it 
easy to control the flow of the music by simply 
holding a hand over different combinations 

of sensors to perform different actions. For 
example, holding a hand over the bottom and 
top sensor pauses or resumes playing the 
music. The diamond formation also makes 
it possible to add a swiping feature to our 
system in the future, such that swiping across 
the sensors from left to right will switch the 
music to the next track.

PROGRAM DESIGN
The main software component of our 

motion-sensor speaker system consists of two 
threads: an interrupt service routine (ISR) on 
the PIC and a Python program on the Raspberry 
Pi. The program continuously executes until it 
is terminated. For the entire system to run 
successfully, the threads, ISR and Raspberry 
Pi program must be synchronized with each 
other and communicate efficiently. The sensor 
thread reads the analog input from the analog 
IR distance sensors and controls the state of 
the system based on these data.

The serial thread’s main function is to 
spawn another thread that reads and sends 
data through the UART module based on the 
state of the system. The ISR processes data 
received through the UART and outputs the 
processed data through the digital-to-analog 
converter (DAC). The serial communication 
program that runs on the Raspberry Pi loads 
the music header files and sends these data 
through the UART. This program also receives 
data through the UART from the PIC that 
affect the state of the program.

For testing, we used a MATLAB program 
to make WAV files. This program converts 
downloaded WAV files to C language header 
files that can be outputted through the DAC 
once transmitted to the PIC. This program first 
reads a WAV audio file specified at a certain 
location on the computer. The WAV files have 
a sampling frequency of 44.1kHz, which is too 
fast for our system to play, so the program 
down-samples the audio by a factor of four.

This allows the audio to be played at a 
sampling frequency of about 11kHz. The 
samples then have to be scaled so they can 
be played by the 12-bit DAC. These converted 
audio samples are then stored to the header 
file, with enters between samples. After being 
converted to a header file, the music is ready 
to be loaded into our program to be played.

PIC32 SECTION
The first PIC32 thread begins by reading 

the first four channels of analog-to-digital 
converter (ADC). The ADC converts the analog 
output from the four IR distance sensors to a 
digital format that is then stored in variables 
(adc_9, adc_10, adc_11, adc_12). We set 
a minimum threshold of 400 ADC units for a 
sensor reading that counts as a valid detection. 

FIGURE 2
Logical structure diagram

Logical structure

PIC Pi

Receive signal

Send data

Output signal

Buffer A
• Download sent data
• Play data via DAC

Buffer B
• Download sent data
• Play data via DAC

Swap between
buffers so one is

always downloading
data and the other 

is outputting it.
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and Computer Engineering and Information Science Engineering. Jidenna is  
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We found this to be an ideal threshold through 
trial and error. If the threshold is too small, 
then you have to hold your hand too close to 
the sensor for motion to be detected. If it’s 
too large, then objects that are far away may 
be unintentionally detected.

We implemented a counter for each sensor 
to keep track of how long a hand is being 
detected by a sensor. The corresponding 
counter is incremented with every consecutive 
iteration of this thread during which a hand 
is still being detected by the same sensor. 
If a sensor no longer detects a hand, then 
its corresponding counter is reset to zero. 
These counters are a form of debouncing 
the sensors. For example, if someone quickly 
waves a hand over a sensor by accident, it will 
not be acknowledged by our program.

These counters act as the control signal 
for the state of the music playback. They 
also signal actions that should be done to the 
playback. The two states that our system can 
be in are “play” and “pause.” When someone 
holds a hand over the bottom and top sensors, 
one state is switched to the other state. In 
other words, the state switches from play 
to pause or pause to play. We found that if 
the top counter is equal to 3 and the bottom 
counter is greater than 1, it is a solid enough 
sign that someone is attempting either to 
resume playing music or pause the music. We 
discovered that when we set the condition for 
both counters to be equal to the same value, 
the switch of states was inconsistent.

The volume of the music can be turned 
up or down when a hand is held over the top 
or bottom sensor, respectively. To adjust the 
volume, the counter corresponding to the 
sensor must be equal to 2, and the sensor 
opposite it must be less than 1. We added the 
“less than 1” condition to differentiate this 
action from changing the play/pause state. 
A variable for volume is then decremented/
incremented based on which action is signaled.

We also implemented an action state for 
switching to a new song. When a hand is 
held over the right or left sensor, the next/
previous track should play. This thread sets 
the action variable to next or previous track 
if either of these counters is equal to 2. The 
desire to switch tracks is later signaled to the 
Raspberry Pi by the serial thread.

SECOND THREAD
The second PIC thread spawns another 

thread that communicates with the Raspberry 
Pi by sending and receiving data through the 
UART’s Tx and Rx pins. Each byte of data is 
received by the PIC and stored into one of the 
buffers, while the other one is being read in 
the ISR. We use two buffers to ensure constant 
playback, since one buffer constantly receives 

the data while the other relays that data to 
the DAC. This is more efficient and necessary 
so that data can be received and written at 
the same time that data are being played. It 
enables a seamless transition between bytes of 
music data that are transferred. The spawned 
thread is not killed until the current buffer 
being written to has been filled with the latest 
8,000 samples of the transmitted music data.

In the spawned thread, we continuously 
check the state of our system and send a signal 
to the Pi based on this state. When the state 
of our system is in “play,” we continuously 
receive data from the Pi by first sending it 
the ready signal. And when the state is in 
“pause,” we stop sending the ready signal, 
which stops the transfer of data—but we 
make sure to save the spot that we stopped at 
on both ends. When switching to the next or 
previous track, we output the corresponding 
signal that basically informs the Pi to begin 
outputting data from the next or previous 
set of data that was downloaded. Each set is 
given a corresponding number on the Pi side.

The next or previous signal is sent only 
once, then we return to continuously sending 
the ready signal, so that the PIC, in turn, 
receives and plays the song immediately. 
This makes the entire song-switching process 
occur in real time. It is important to clear 
either buffer when necessary, such as when 
switching songs, so that playback of different 
song data does not overlap—an issue that we 
encountered briefly.

INTERRUPT SERVICE ROUTINE
The ISR formats the samples in the serial 

FIGURE 3
Sensor board with diamond formation of sensors
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buffers for the DAC, before transmitting them 
through the second SPI channel and outputting 
through the DAC. This ISR is triggered by a 
timer interrupt at a rate determined by the 
sampling frequency of the music playback. 
We set the timer to trigger an interrupt every 
3,628 cycles (1/11,025Hz) (PIC32 clock freq./
sampling frequency). Each time the ISR is 
executed, a new sample is sent through the 
SPI channel to the DAC, only if the state of 
the system is in “play.” Before the sample is 
transmitted through the SPI port, the sample 
is manipulated based on the state of the 
system and requirements for the DAC. The 
sample is first converted to an integer, before 
being left-shifted by a number determined by 
the volume variable.

A greater left shift creates a larger value, 
which consequently makes the sample louder. 
The most that each sample can be left-shifted 
is four. That’s because the samples are 8-bit 
values, and the DAC only supports 12 bits. 
The samples cannot be left-shifted by less 
than zero, because that would result in the 
loss of some of the sample’s data. The shifted 
sample is then added to 2,048 to increase 
its amplitude, to maximize the potential 
of the DAC. Before being written to the SPI 
channel, the sample is OR-ed with the DAC A 
configuration bits. This step tells the SPI to 
send the sample to DAC A.

The buffer that is not being written to at 
the time is read and sent through SPI to the 
DAC. Once this buffer’s samples have all been 
transmitted to the DAC, the ISR switches the 
buffer state. This indicates that this buffer 
should now be written to, and the other buffer 
should be read from. This switching of buffers 
allows for continuous playing of music, 
because samples from the Pi are always being 
received and stored at the same time that the 
PIC is outputting these samples.

Pi SECTION
This program’s main purpose is to 

transmit music samples to the PIC using serial 
communication. It reads and writes serial data 
through the UART module on the Raspberry 
Pi. The program begins by initializing a serial 

writer and reader, to send and read signals 
through the UART. We set the baud rate for 
this communication to 115,200bps—fast 
enough to transmit 11.5 thousand samples 
per second). We then read the header files into 
variables, which we convert to integer format. 
One final conversion is then performed on the 
data: conversion to byte arrays format. At this 
point, the music samples can be transmitted 
through the Raspberry Pi’s UART transmit pin.

Once the initial procedures performed on 
the data are completed, the program enters an 
infinite loop and begins reading the serial input. 
If an “A” is received, then a flag is set to indicate 
that the PIC is waiting to receive data. Once this 
flag has been set, the next 8,000 samples of 
the current song being played are transmitted 
through the Pi’s transmit pin to the PIC.

If the song is finished being transmitted, 
then on the next iteration, the next song 
starts being transmitted to the PIC. If an 
“N” (or “P”) is received instead, the next (or 
previous) song read by the program starts 
to be transmitted. Our current Python serial 
communication program transmits only three 
songs, but this program can be expanded 
to transmit many more songs simply by 
converting and loading more WAV files onto 
the Raspberry Pi’s memory. It will also require 
duplicating much of the code.

RESULT OF DESIGN
We were pleased with what were able to 

achieve with our project. It covered all the 
bases of what we had initially aimed to do. 
When we loaded three songs through the Pi, 
we were able to pause and play a song, skip 
forward to the next song, skip back to the 
previous song and control the volume. The Pi 
read properly from the serial interface, and 
did not start transmitting the music until it 
received permission from the PIC. The PIC 
read the inputs from the distance sensors, 
and used that information either to control 
the volume level, or tell the Raspberry Pi to 
stop transmitting or change the song it was 
sending. All of this was performed quickly 
and smoothly, and—most importantly—in real 
time. We were able to exhibit all of this during 
our demo. To see a YouTube video of our 
project demo, scan the QR code in Figure 4. 
This video is also posted on Circuit Cellar’s 
article materials webpage.

The design also showcases all the things 
we considered throughout the development of 
the speaker. By positioning the sensors on a 
board similar to a remote and in an efficient 
manner, we ensured that each gesture will be 
correctly interpreted. This design as a whole 
is preferable and useful because all it takes is 
a simple hand gesture over the apparatus to 
control the user’s music.

FIGURE 4
QR code for YouTube video 
demonstration of our project. The 
video is also posted on Circuit Cellar’s 
article materials webpage.

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials

RESOURCES
Digi-Key | www.digikey.com

Mathworks | www.mathworks.com

Microchip Technology | www.microchip.com

Pololu | www.pololu.com

http://www.circuitcellar.com/article-materials
http://www.digikey.com
http://www.mathworks.com
http://www.microchip.com
http://www.pololu.com
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A more advanced version of this 
prototype could be useful in many situations. 
The primary and most popular use would be 
providing a fun, innovative and relatively 
effortless method in which users can 
interface with their devices. However, there 
are also some serious applications for 
this technology. For example, people with 
impaired vision could benefit greatly from 
this type of gesture technology. If the motion 
sensing speaker were attached to the user’s 
wrist—perhaps as part of a smart watch 
application—the user could switch between 
songs or perhaps pages of an audio book 
without needing touchscreen buttons. The 
user would simply wave a hand over the 
screen in the desired direction to switch or 
flip pages. Those with mental disabilities 
could possibly benefit from this technology 
as well, because they might find it easier 
to use certain gestures and hand motions, 
rather than the typical button inputs required 
to interface with devices. Overall, we can 
see many amusing and functional uses for 
a more advanced version of this prototype.

CONCLUSIONS
On the whole, our final product worked 

quite seamlessly and met, if not exceeded, 
our expectations. We had to deviate from 

some initial plans as we progressed with this 
project. But, in the end, we fully achieved our 
goal of having a quality speaker system that 
could be motion-controlled by hand gestures.

There are a few supplements we could add 
in the future to further bolster our system. 
It would be desirable to develop a method of 
streaming the audio WAV file directly on the 
Raspberry Pi. This would preclude the lengthy 
process of the MATLAB header conversion 
for each song. Another improvement would 
be refining the gesture-detection software, 
so that users could perform more engaging 
motions, such as swiping up to raise the 
volume, and swiping down to lower it.

An additional interesting feature that we 
talked about was installing a microphone 
that could “listen to the room.” It would 
adjust the volume of the music based on the 
background noise present in the current 
environment. However, this might not be 
feasible or desirable in some situations. Our 
final, most advantageous improvement 
would be the ability to play music from a 
streaming application, such as Spotify or 
Apple music. This would make our system a 
lot more useful and popular. All in all, these 
improvements would be nice additions to our 
system, but we are very happy with our 
current final product. 
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A ir pollution has become a 
problem that cannot be 
underestimated, due to its 
implications in the increasingly 

frequent catastrophic events of which we 
are powerless spectators. In recent years, 
governments have tried to limit not only 
global emissions but also possible sources of 
pollution in the buildings where we live.

Many researchers have shown a strong 
correlation between exposure to pollutants in 
indoor environments and some widespread 
diseases, such as asthma, allergies, lung 
infections, some forms of cancer and diseases 
affecting the cardiovascular system. Terms 
such as SBS (Sick Building Syndrome) and 
THS (Toxic Home Syndrome) have been coined 
to highlight and group all those symptoms 
of health deterioration of occupants in 
environments where there is polluted air. It 
has been calculated that people spend about 
90% of their time indoors, in places such 
as schools, offices and apartments, so the 
health impact of the air we breathe in these 
environments is much greater than that 
resulting from outdoor air pollution.

On the market we have seen, in recent 
years, a rapid spread of air quality monitoring 
systems, especially those integrated into 
ventilation systems. Many of these are limited 

to measuring the indoor air quality (IAQ) in a 
single room and near the ventilation system.

Setting out to create an educational 
application that involves Bluetooth LE (BLE) 
technology, I thought of combining business 
with pleasure by developing a network of IAQ 
monitoring tags that allows evaluating the 
healthiness of multiple environments and one 
that is very simple to install—taking advantage 
of the Android smartphone features. This is how 
IAQnet was born—a small system consisting of 
one or more monitoring tags based on Bluetooth 
technology and an Android app communicating 
with them, displaying the values of some 
sources of pollution present in our house.

INDOOR AIR QUALITY AND 
SENSORS

Indoor air quality can be influenced by 
various kinds of contaminants, and currently 
there is no standard measurement method. 
One of the most promising methodologies is 
monitoring the levels of VOC (volatile organic 
compounds) and carbon dioxide (CO2). VOCs 
are compounding whose toxicity depends on 
their density in the air we breathe.

The VOCs include: benzene, which is 
generated in the production of plastic 
materials; chlorofluorocarbons (CFCs), which 
are present in cleaning products and coolants; 

Unhealthy air in indoor environments has been linked to diseases such as asthma, allergies, 
lung infections and more. That’s driven the demand for sophisticated indoor air quality 
(IAQ) measurement systems, but many have serious limitations. In this project article, 
Carlo shares the details of his design of IAQnet project. The Bluetooth-based system 
creates a network of IAQ monitoring tags that enables users to evaluate the healthiness 
of multiple environments.

Bluetooth-Based Design
By  
Carlo Tauraso

Device Measures 
Indoor Air Quality
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adhesives and spray paints; formaldehyde, 
which is present in plastic laminates on wood; 
acetone, which is found in many paints; and 
numerous other chemicals.

For this project I used a low-cost breakout 
board with a CCS811 sensor from AMS AG [1]. 
It’s an ultra-low-power digital sensor with an 
I2C interface that integrates an MOx (Metal 
Oxide) gas sensor, to detect a wide range of 
VOCs and to predict TVOC (total volatile organic 
compounds). It includes a microcontroller 
(MCU) that uses an algorithm to process the 
values measured by presenting a TVOC value 
at the output, and then converts it into the 
equivalent CO2 level. The TVOC output range 
is from 0 to 1,187ppb.

Clearly this equivalent level of CO2 is 
not a direct measure of the CO2 present in 
the environment, but rather the result of 

an equation application. Therefore, the 
sensor provides TVOC concentrations and 
an estimation of CO2 or “eCO2.” The eCO2 
output range is from 400 to 8,192ppm. 
TVOC measurement is more important than 
CO2 in terms of health impact. However, 
the equivalent CO2 makes it possible to add 
the sensor output to ventilation standards 
and implement it for ventilation systems, 
thus reducing the energy consumption 
compared to time-scheduled ventilation. 
The equivalent CO2 allows the detected TVOC 
value to be interpreted more clearly, through 
the use of tables (Figure 1) that associate 
the concentration of CO2 with the need for 
ventilation. For example, to have a healthy 
environment in a room, the concentration of 
CO2 should not exceed 1,000ppm.

For more precision, it is possible to 
compensate gas readings with variations in 

FIGURE 2
The IAQnet tag schematic

FIGURE 1
Association of the CO2 concentration in 
indoor air with the need for ventilation
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temperature and humidity. I therefore added 
another low-cost breakout board with an 
HTU21D sensor from Measurement Specialties 
[2]. It is a highly accurate temperature and 
relative humidity sensor. It also uses an I2C 
interface, so I share the same bus used for 
the CCS811. Default resolution is set to 12 bits 
relative humidity and 14-bit temperature 
readings, and is more than sufficient for our 
purposes. Measured data is transferred in 
2-byte packages, MSB first. But the measured 
values require a conversion carried out by 
applying the formulas indicated on page 15 of 
the HTU21D datasheet [3].

DESIGNING THE IAQnet TAG
As shown in the schematic (Figure 2), 

the circuit consists of a core module based 
on Nordic Semiconductors’ nRF51822 SoC 
and two breakout boards—one for detecting 
temperature/humidity, and one for detecting 
the concentration of VOCs. The nRF51822 is a 
multiprotocol SoC for ULP wireless applications 
[4]. It incorporates an Arm Cortex M0 CPU, 
256KB flash memory, 32KB RAM memory 
and a powerful radio transceiver. The nRF51 
series RF transceiver is interoperable with 
BLE (Bluetooth low energy) and other 2.4GHz 
protocol implementations such as ANT, 
Gazelle and others. In this project I used BLE 
to develop the Android app. This makes the 
app for reading the data detected by the tag 
simpler and more affordable, even for less 
experienced readers. However, the system 
also allows the implementation of an ad hoc 
communications protocol that is also fully 
air-compatible with the nRF24L series that I 
used in a thermal monitoring system project 
published a few years ago entitled “ Build a 
Thermal Monitoring Network” (Circuit Cellar 
288, July 2014).

For the prototype, I used another breakout 
board from Waveshare [5], with the nrf51822 
in the basic configuration (Figure 2). The 
oscillator circuit consists of a crystal at 16MHz 
with two capacitors C1 and C2. The capacitors 
C9 and C11 have decoupling function on their 
power source pins. Now, let’s look at the 
antenna section. For space reasons I have used 
the model with an integrated PCB antenna. 
The circuit has an impedance network adapter 
with capacitors and inductors (L1, L2, L3, C3, 
C4, C5 and C6). Adapting the impedance is 
critical to avoid losing power. Table 1 shows 
the parts list.

Pins P0.00 and P0.01 are configured, 
respectively, as data line (SDA) and clock line 
(SCL) of the I2C communication bus between 
the nrf51822 and the HTU21D/CCS811. R1 
and R2 are pull-up resistors. Note that both 
breakout boards contain two SMD pull-up 
resistors. On the CS811 board they are 4.7kΩ 

ABOUT THE AUTHOR
Carlo Tauraso (carlotauraso@gmail.com) studied computer engineering at 
the University of Trieste in Italy and wrote his first assembler code for the 
Sinclair Research ZX Spectrum. He is currently a senior software engineer, 
who does firmware development on network devices and various types of  
micro-interfaces for a variety of European companies. Several of Carlo’s 
articles and programming courses about Microchip Technology PIC MCUs 
(USB-PIC, CAN bus PIC, SD CARD, C18) have been published in Italy, France 
and Spain. In his spare time, Carlo enjoys playing with radio scanners and 
homemade metal detectors.

FIGURE 3
The tag assembly

Parts List
C1, C2 12pF capacitors
C3 2.2nF capacitor
C4 1pF capacitor
C5 3.9pF capacitor
C6 1.5pF capacitor
C7, C8, C11, C12 100nF capacitors
C9 1nF capacitor
C10 47nF capacitor
C13 1µF capacitor
R1, R2, R3 4.7kΩ resistors
X1 16MHz crystal
L1 4.7nH inductor
L2 27nH inductor
L3 3.3nH inductor
U1 nRF51822
U2 HTU21D
U3 CCS811

TABLE 1
Parts list for the IAQnet project

mailto:carlotauraso@gmail.com
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(472SMD), and on the HTU21D they are 10kΩ 
(103SMD). To avoid connecting the two pairs 
in parallel—reaching a total resistance that 
is too low—there are pads on the board 
that allow you to connect or disconnect the 
integrated pull-up resistors. In this project, I 
used only the 4.7kΩ resistors present on the 
HTU21D board.

The CCS811 chip operates in polling mode. 
A measurement is performed every second 
(DRIVE_MODE = 001). The host software 
cyclically reads data from the sensor, 
performing a 4-byte data read to the register 
named ALG_RESULT_DATA. Each pair of values 
should be converted to a 16-bit type field 
value. In this way it is possible to obtain the 
eCO2 and TVOC values directly. The CCS811 
supports compensation for relative humidity 
and ambient temperature. So, before every 
TVOC reading, it is possible to update ENV_
DATA registers with temperature and humidity 
values from HTU21D.

In power-sensitive applications, the 
WAKE pin is controlled by a GPIO pin. In my 
project, I tie it to ground, so the chip never 
enters sleep mode. The ADDR pin is low, so 
I2C transactions use the 7-bit address 0x5A—
which is different from the address used 
by the HTU21D (0x80), because the I2C bus 
is shared. The RESET pin is an active low 
input, and is pulled up to VCC by default, so I 
connect an external 4.7kΩ pull-up resistance 
(R3) to avoid erroneous resets. It is also 
worth considering that the CCS811 sensor has 
a 20-minute condition period before accurate 
readings are generated. Furthermore, the 
manufacturer AMS advises customers to 
run the CCS811 for 48 hours, because the 
performance in terms of sensitivity changes 
during early use.

To ensure a simple and very small 
assembly, I created an interconnection layer. 
It is a small card that allows you to simply 
connect the three cards without having to add 
any other components. In Figure 3, the green 
small card is in the center. The interconnection 
board also includes a connection strip for 
a battery, and the JTAG bus (VCC, SWDIO, 
SWCLK, GND) to update the firmware. Finally, 
for debugging purposes, I have included 
some messages in the firmware during the 
initialization and measurement phases. They 
are sent through a serial interface that uses 
pins P0.05 RX, P0.06 TX, P0.07 CTS and P0.12 
RTS. If you connect a TTL-to-RS232 converter 
to these pins, you can view information in 
terminal as:38,400bps/8/none/1/no flow ctrl.

In Figure 4, you can see the top and bottom 
copper layers of the interconnection layer. As 
you can see, it is a small card with a very 
simple scheme to connect the three breakout 
boards together. Assembly takes place by 

welding the cards to the interconnecting 
layer, one above the other, like a sandwich. In 
Figure 5 you can see the assembled prototype 
board.

THE FIRMWARE
The firmware that runs on the core module 

consists of two parts: a BLE protocol stack 
(S110) and a user application. The nRF51 
series SoCs are programmable with software 
stacks available from Nordic Semiconductors. 
These stacks are known as SoftDevice. They 
make application development flexible, 
so we can concentrate on the logic of the 
user application. Moreover, it is possible to 
integrate the same hardware on platforms 
that use other protocols by replacing the 
SoftDevice with the appropriate one. In this 
project, the user application acquires the 
values of the two sensors, and makes them 
available to an Android app via Bluetooth by 

FIGURE 4
The interconnection layer

FIGURE 5
The assembled prototype board
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calling SoftDevice’s BLE functions.
I used the SDK V.10 for the nrF51 series and 

the SoftDevice S110—both supplied by Nordic 
Semiconductors. Development of firmware/
software for BLE peripherals cannot be fully 
explained in the few pages of an article. So, 
I’ll only summarize the fundamental concepts 
for understanding this project, referring to 
the extensive literature that can be found on 
the Internet.

The basic concepts—also used in the 
app development—are: GAP, GATT and its 
objects. GAP (generic access profile) defines 
the general topology of a BLE network. 
Connecting devices can have two different 
roles: central and peripheral. In my project, 

the central device (acts as a client) is the 
smartphone, and the peripheral (acts as a 
server) is the tag with sensors. The peripheral 
uses GAP during the advertising phase, when 
they send some frames to be discovered on 
air from the central device. It is important to 
note that a central-peripheral device can be 
connected to multiple devices. In my project, 
the smartphone can query the entire network 
of tags one by one, thereby keeping the entire 
home under control. When a peripheral is 
connected to a central device, it stops to send 
advertising data, so another device would not 
be able to find the peripheral and connect to 
it.

Every BLE peripheral has a profile GATT 
(generic attribute profile). It is the top of 
the ATT (attribute protocol)—a protocol 
that defines how a server exposes data to 
a client, and how they are structured. Every 
profile contains definitions and properties 
of services and characteristics. When you 
connect to a device, you use GATT services 
to communicate. A profile can have one or 
more services, and each service can have 
one or more characteristics. Usually services 
represent features, whereas properties 
define operations that can be performed on 
a characteristic, such as read, write, notify 
and indicate. Every attribute (service and 
characteristic) is distinguished by its UUID 

INITIALIZE AND LOAD BLE STACK
INITIALIZE GAP PARAMETERS [device name, connection interval]
INITIALIZE ADVERTISING PARAMETERS [advertising interval, timeout]
INITIALIZE CUSTOM SERVICE PARAMETERS [assign UUID, create characteristics, assign permissions]
INITIALIZE UART [only for debugging purposes]
INITIALIZE I2C BUS

HTU21D SOFTRESET
HTU21D CONFIGURATION [Resolutions: Temperature 12bits, Rel. Humidity 14bits]

CCS811 read HW ID [reading 0x81 for CCS811]
CCS811 read STATUS
IF APP_VALID=1 [a valid firmware image is present]
START SENSOR FIRMWARE [transition from boot mode to firmware mode]
CCS811 read STATUS
IF FW_MODE=1 [the sensor firmware is ready]
CCS811 CONFIGURATION MODE1 [measurement every second and interrupts disabled]
START ADVERTISING [to be found by a mobile device]
CUSTOM SERVICE LISTENING FOR CONNECTIONS SHARING TWO CHARACTERISTICS
MAIN LOOP
START TEMPERATURE MEASUREMENT
START REL HUMIDITY MEASUREMENT
CONVERT TEMP AND REL HUM VALUE
WRITE TEMP AND HUM IN CCS811 ENVIRONMENT DATA REGISTRY
WHEN READY READ ECO2 AND VCO
UPDATE CHARACTERISTICS IN CUSTOM SERVICE 
END MAIN LOOP

LISTING 1
The firmware logical flow

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials

RESOURCES
Adafruit | www.adafruit.com

AMS | www.ams.com

Nordic Semiconductor | www.nordicsemi.com

TE Connectivity | www.te.com

Waveshare | www.waveshare.com

http://www.circuitcellar.com/article-materials
http://www.adafruit.com
http://www.ams.com
http://www.nordicsemi.com
http://www.te.com
http://www.waveshare.com
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(Universal Unique Identifier). The official BLE 
standard adopted 16-bit UUIDs, while the 
custom ones get 128-bit UUIDs assigned.

In my project, I define a custom service 
with two characteristics. One is read 
only, and contains a string of four values: 
temperature, humidity, TVOC and eCO2. The 
other is writeable and allows commands to be 
sent to the tag. This second one will be used 
for features that I would like to develop in the 
future, such as activating/deactivating a tag 
from the network, or starting a ventilation 
system connected to the tag when certain 
values are reached.

After explaining the basic concepts, it is 
possible to better understand the firmware 
logical flow, which is summarized in Listing 1. 
As you can see, after the initialization of the 
GAP, the advertising phase and the start of the 
service that exposes the two characteristics, 
the rest of the firmware is just an infinite loop 
that reads relative humidity and temperature, 
writes them to the CCS811 registry and then 
reads TVOC and eCO2—updating the values of 
service characteristics.

THE SOFTWARE
I developed the app using the Android 

Studio development environment, and 
an interesting template called Android 
BluetoothLeGatt Sample that was provided 
with the environment. This sample 
demonstrates how to create a custom 
service for managing connection and data 
communication with a GATT server. You 
therefore have every component necessary to 
transmit arbitrary data between devices by 
Bluetooth LE API.

Recently, a useful discussion space on 
GitHub was created about this sample [6]. 
The GitHub discussion also contains all the 
modification proposals, as well as code 
examples. Obviously, I had to change the 
sample for my purposes. Explaining how 
to develop an Android app that uses the 
Bluetooth protocol is beyond the scope of this 
article, so I will focus on the most significant 
changes I made.

The sample is created with a default 
interface. The first step is to design the new 
interface for viewing the four monitoring 
parameters. I therefore inserted four 
TextView controls, each connected to a data 
field. TextView is a user interface control 
that is used to set and display the text to the 
user. One was for the temperature (id.temp), 
one for the relative humidity (id.hum), one 
for the TVOC (id.tvoc), and the last for the 
eCO2 (id.eco2).

I placed a button linked to the 
onClickUpdateData event, which updates 
the interface data fields with the values in 

the service characteristic that correspond to 
those received by the tag via Bluetooth. The 
definition of the various interface components 
is grouped in the iaq_net_layout.xml file. This 
file is read when the OnCreate function 
(DeviceControlActivity.java) is 
executed during the app boot. The correct layout 
is loaded thanks to the setContentView(R.
layout.iaq_net_layout) instruction. In 
DeviceControlActivity I also define the 
mTemp, mHum, mEco2 and mTVOC data fields.

To complete the interface development, it 
is necessary to remove the references to any 
fields of old layout by inserting those to the new 
layout fields, such as mTvoc = (TextView) 
findViewById(R.id.hum), for the relative 
humidity values. In this way we have linked 
the interface to the internal variables that will 
store the measured values.

Figure 6 shows how the app starts by 
scanning all the Bluetooth devices present 
in the surrounding area. Tap on the IAQtag 
link (C8:41:E5:BF:8F:01 MAC address), and 
the app will connect with the tag displaying 
the detected data. Now, by clicking on the 
“Update Data” button, the values are updated 
in real time.

I then moved on to the development 
of the functions for processing the values 
represented in the interface. I added a 
reading function for the service characteristic 
r e a d C u s t o m C h a r a c t e r is t ic() 
(BlueToothLeService.java), and inserted 
in the function mGattUpdateReceiver the 

FIGURE 6
Android app IAQnet
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necessary instructions when the measurement 
data is ready to be displayed. In the firmware, 
I chose to send the data from the tag already 
preformatted in a string 20 characters long. 
In the reception sequence I call a function to 
extract the individual values and assign them to 
the respective internal variables. At this point, 
all that remains is to link the instructions to the 
interface button interaction by entering a recall 
to the readCustomCharacteristic() 
(Listing 2).

When you click on the button, you call the 
function readCustomCharacteristic, 
and the following actions occur: the values 
are requested from the tag that updates its 
service characteristic, the characteristic value 
is read by the smartphone via BLE updating 
its own service, then the individual values 
are extracted from the string and inserted 
into the internal variables. These are linked 
to the interface that displays values on the 
smartphone screen.

From Android 5, for all the BLE apps 
you need to add some permissions in the 
manifest file to access the device location, 
and call a function that requires the user 
to authorize this activity when the app 
is running. This can be done by adding a 
verifyPermissions in the OnCreate 
event (DeviceControlActivity.java), as 
shown in Listing 3.

CONCLUSION
An interesting future development would 

be to use the notification system to update the 
data on the Android app. Notifications can be 
sent to the client periodically or whenever the 
characteristic value changes. The smartphone 
can register for these notifications, so 
ambient parameters (IAQ, Temp, Hum, eCO2) 
are automatically displayed, rather than being 
requested by a refresh command.

This project can serve as the basis for 
developing any network of environmental 
tags. It is sufficient to replace the sensors 
with those needed for your application. The 
changes to the firmware and the Android app 
are relatively simple and relate to the same 
functions implemented in this project. After 
all, once the tag has taken the measurements 
and made them available in the service 
characteristic, they can be requested from 
the app via Bluetooth.

Another feature I would like to implement 
is a second service characteristic that is 
remotely writable. You could use it to encode 
a series of commands that could be interpreted 
by the tag, which should execute them as 
soon as they are sent via Bluetooth. For now, 
I hope this circuit can be a starting point for 
those who want to experience the world of 
Bluetooth and Android development. 

private void displayData(String data) {
   if (data != null) {
      //Extract data fields from received string
      mTemp.setText(data.substring(0,4));
      mHum.setText(data.substring(4,8));
      mEco2.setText(data.substring(8,12));
      mTvoc.setText(data.substring(12,16));
   }
}

public void onClickUpdateData(View v){
      if(mBluetoothLeService != null) {
         mBluetoothLeService.readCustomCharacteristic();
      }
    }

LISTING 2
Data extraction and link to interface 
button interaction

LISTING 3
Permissions and a function to verify them

<uses-permission android:name=”android.permission.ACCESS_COARSE_LOCATION”/>
<uses-permission android:name=”android.permission.ACCESS_FINE_LOCATION”/>

public static void verifyPermissions(DeviceScanActivity activity) {
    int permission = ActivityCompat.checkSelfPermission(activity, Manifest.permission.ACCESS_FINE_LOCATION);
    if (permission != PackageManager.PERMISSION_GRANTED) {
        // We don’t have permission so prompt the user
        ActivityCompat.requestPermissions(
                activity,
                new String[] {
                        Manifest.permission.ACCESS_COARSE_LOCATION,
                        Manifest.permission.ACCESS_FINE_LOCATION,
                },
                1
        );
    }
}
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I t’s amazing to see what kinds of sound 
analysis can be done using a 32-bit 
MCU. Our project is the construction of a 
sound localization device. The Microchip 

PIC32 microcontroller (MCU)-based device is a 
triangular arrangement of microphones used to 
localize the direction from which an arbitrary 
sound is coming. By recording input from three 
microphones, we were able to identify the time 
delay between the audio recordings. These 
time delays provide a means to compute the 
direction of the sound.

The hardware for the project is made up of 
three main parts: three microphone circuits, 
a TFT (thin-film-transistor) LCD (liquid crystal 
display) and a custom PIC32 prototyping board. 
The prototyping board gives a breakout for pins 
on the PIC32 in addition to 3.3V power, an SPI-
controlled DAC and an SPI-controlled TFT display. 
The prototyping board uses the PIC32MX250F128B 
[1], but theoretically, any PIC32MX MCU should 
have the same hardware we used.

Each of the three microphone circuits 
includes an electret microphone, a set of filters 
and an amplifier. The output of each microphone 
circuit is fed into an ADC channel on the PIC32. 
The TFT display is used to show debugging 
information and to point in the direction of the 
sound. The full schematic is shown in Figure 1. 

THREE-PART CIRCUIT
The microphone circuit consists of three 

parts: The microphone itself [2], a high-pass 
filter to center the signal around half voltage and 
an amplifier, which uses an active band-pass 
filter to amplify only frequencies of interest. A 
Texas Instruments (TI) LM4562 audio op amp [3] 
acts as the core component of the amplifier and 
filter part of the circuit. Because the LM4562 is 
not a rail-to-rail op amp and does not work with 
3.3V, a different set of rails was required to keep 
the op amp out of saturation. 9V were supplied 
to the positive rail, and -3V were supplied to 
the negative rail. Because we found that noise 
from the MCU can get tracking into the audio 
circuitry, the 3.3V supply for the microphones 
was generated from a separate regulator with a 
constant load constructed out of a few resistors. 

The initial high-pass filter has a cut-off of 
around 160Hz. The high-pass filter on the band-
pass amplifier was selected to roughly match 
the cut-off of the initial high-pass filter. The 
low-pass filter of the op amp was selected to 
give roughly a 7.3kHz cutoff frequency. The gain 
used was 100:1. 

Each output from a microphone circuit was 
attached to an I/O pin with analog functionality. 
To protect these pins from any over-voltage or 
under-voltage conditions, a pair of Schottky 

Learn how these two Cornell students built a sound localization device. The employed a 
Microchip PIC32 MCU and a set of microphones to determine the direction from which an 
arbitrary sound is coming. They recorded input from three microphones to identify the 
time delay between the audio recordings. These time delays provide a means to calculate 
the direction of the sound.

Using a PIC32 MCU

By  
JinJie Chen and Alvin Pan

Sound Localization
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diodes and a resistor were added to the output 
to construct a voltage snubber. The Schottky 
diodes provide a conducting path in case of 
one of these conditions, while the resistor 
limits the current flow through these diodes.

The TFT display shows debugging 
information and points in the direction of the 
source of the sound. The part we used is an 
Adafruit breakout (part number 1480) [4] that 
provides the TFT display, a TFT display driver 
and an SD card reader (unused). The code for 
this was a library that was adapted from the 
library Adafruit supplied for running the TFT 
with an Arduino. The TFT breakout uses an 
SPI channel, along with a few other digital 
I/O pins. Cornell’s ECE4760 course links to a 
library for the TFT display that was adapted 
from an Arduino library by Tahmid [5].

A Microchip Technology MCP4822 digital-
to-analog converter (DAC) [6] was used for 
debugging the system but was not used for 
the project itself. By sending the waveform to 
the DAC at a rate of 5kHz, we can review what 
the output of the system looks like. More on 
that later in the results section.

SOFTWARE AND MATH
First, to locate the direction of the sound, 

the system needs to record the reading 

from each microphone channel. Second, the 
recording of each channel is cross-correlated 
with the next channel to identify the relative 
time shift from one recording to the other. 
Third, the relative timing between each pair 
of microphone channels is used to compute 
the direction of the origin of the sound 
source. The relative direction is computed 
from the timing differences and the physical 
arrangement of the microphone placement, 
to derive the direction of the sound source 
in degrees. This cycle is repeated as quickly 
as possible, and the direction estimates are 
digitally low-passed using an averaging filter 
to give an estimate of the direction of the 
sound. Finally, the angle is written to the TFT 
display to show the result.

The analog outputs from the three 
microphone channels are connected to the 
three separate ADC channels. The ADC is 
configured to operate in a timer-triggered 
sampling mode, which starts a new sample 
each time the timer-interrupt flag is raised. It 
is also set to sample three channels and store 
the results as 16-bit signed integers in the 
ADC’s internal buffer. The ADC is set to raise 
an interrupt flag once every three samples. 
To make the system run at the intended 
frequency, the timer for triggering the ADC 

FIGURE 1
Full schematic of the project, including MCU, microphones and power circuitry. Microphone and amplifier circuitry are on the right side.
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sampling is set to run three times faster than 
the intended sampling frequency.

This causes the timer to trigger three 
ADC samples—one for each microphone at 
the intended frequency. A set of three DMA 
channels is used to transfer the data from the 
ADC output buffers and into storage. Once the 
DMA channels are enabled, the DMA transfers 
16-bit cells whenever the ADC interrupt flag is 
raised. When the entire block is transferred, 
the DMA channel raises the DMA_EV_DST_
FULL to signal completion of the transfer. 
The computation_thread checks the 
completion flag for all three DMA channels to 
determine when to begin the computation of 
the sound localization.

Once the microphone data is fully recorded 
in the arrays, as indicated by the DMA_EV_
DIST_FULL flags, the time delay is calculated 
between each pair of microphone recordings. 
The main mathematical technique we use 
to compute the time delay between two 
signals—the microphone recordings—is cross-
correlation, which measures the similarity of 
two signals by taking the sum each pair of 
points in the signal as one signal slides along 
another. The formula is as follows:   

(f×g)[n]= f×[m]g[m+n]
m=-∞

∞

∑
	  [1]

Each correlation value gives the similarity 
value between the first signal and the second 
signal, shifted by some amount of time. The 
index of the entry for the maximum value is 
the time delay in units of the sampling rate. 
For example, for the two square waves shown 
in Figure 2, we see the result of taking the 
cross-correlation (bottom graph).

CROSS CORRELATION
The cross-correlation gives a peak at the 

maximum overlap. In this case, the orange 
curve was used as the signal f in the equation, 
and the blue curve was used as the signal g. 
The maximum overlap is the time shift of f with 
respect to g, which in this case is at -200 in both 
plots. Although we referred to the position of 
the peak as an index, we don’t mean an index 
into an array. It simply means the location in 
the signal. The index of -200 means that the 
blue curve must be shifted backward in time by 
200 time units to match the orange curve. To 
get a long signal that we can easily measure, we 
used a swept sine wave such as the one shown 
in Figure 3, since a swept sine wave is not 
repetitive. This prevented a situation where the 
correlation gives a match for multiple different 
time shifts.

Figure 4 shows the result of taking the 
cross-correlation of a swept sine wave with 
another swept sine wave, in which the distinct 

ABOUT THE AUTHORS
Alvin Pan is a recent graduate in Electrical and Computer Engineering 
and Computer Science from Cornell University with interests in embedded  
systems and robotics. He can be reached at ap924@cornell.edu

JinJie Chen is a recent ECE graduate of Cornell University and now an  
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embedded system and edge computing. He can be contacted at  
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// cross-correlate each pair of microphone recordings
void cross_correlate() {
  int channel, idx, shift;
  for (channel = 0; channel < num_mic_channel; channel++) {
  // shift the kernel -max_diff to max_diff of mic_data_size
  int correlate_channel = (channel + 1 > 2) ? 0 : channel + 1;
  for (shift = -(max_diff); shift <= (max_diff); shift++) {
    long tmp_sum = 0;
    // kernel size is mic_data_size - (2*(max_diff) + 1)
    for (idx = (max_diff) + 1; idx < (mic_data_size) - (max_diff); idx++) {
      int idx2 = (idx + shift);
      tmp_sum += (((long) mic_data[channel][idx] + mic_bias[channel]) * ((long) mic_ 
       data[correlate_channel][idx2] + mic_bias[correlate_channel]))>>2;
    }
    // save correlation results for DAC debugging
    correlate_data[channel][shift + (max_diff)] = (tmp_sum > 0 ? tmp_sum : 0)>>3;
    // update new max peak
    if (correlate_data[channel][shift + (max_diff)] > peak_max[channel]) {
      peak_max[channel] = correlate_data[channel][shift + (max_diff)];
      peak_index[channel] = shift + correlate_bias_adj[channel];
    }
  }
  if (abs(peak_index[channel]) < 2)
    peak_index[channel] = 0;
  }
}

LISTING 1
The code for computing a cross-correlation via direct application of the definition. Only the center region of on signal is used to avoid the need to normalize the results.

www. EarthLCD.com/cc1
949.248.2333

25 Years Embedded Display Experience

http://www.EarthLCD.com/cc1
www.cc-webshop.com
www.EarthLCD.com/cc1
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maximum gives the relative time shift between 
the signals. In this case, the maximum is at 
0.05, which indicates that the second signal 
is shifted 0.05 time units ahead of the other.

In the process of computing the true 
direction, we evaluate a few constants. First 
is mic_data_size which is the size of the 
array that holds the microphone data. This is 
computed by taking [sampling rate] × [sample 
duration]. Another is max_diff which we 
use as the maximum value of the time shift of 
the cross-correlation peak. max_diff is the 
max possible shift geometrically possible, and 
is computed by:

[length] × 
[sampling rate]

[speed] 	 [2]

where length is the length of one leg of the 
triangular arrangement and speed is the 
speed of sound. These values set how much 
data is sampled and what region of the 
sampled data is used in cross-correlation, as 
discussed next. 

The cross-correlations are calculated on 
channel 0 with respect to channel 1, channel 1 
with respect to channel 2, and channel 2 with 
respect to channel 0. Each cross-correlation 
is computed by sliding the middle (mic_data_
size - (2 × max_diff)) wide section of the first 
recording fully along the second recording, to 
compute the sum of dot products of the fully 
overlapped recordings. The resulting cross-
correlation values are stored in an array of 
size (2 × max_diff) + 1. Care must be taken to 
ensure that (2 × max_diff) + 1 is reasonably 
smaller than mic_data_size to ensure a 
sufficient number of data points are used in 
the computation. As the cross-correlation 
values are computed, the peak value and 
its associated time shift of each of the three 
pairs are identified and recorded to compute 
the direction of the source sound.

Listing 1 is the function used for the cross-
correlation. In this code, we compute cross-
correlation using the definition equation. A 
section of one of the inputs is shifted across 
the other input. Solving the cross-correlation 
via an FFT (fast Fourier transform), element-
wise multiplication and IFFT (inverse FFT) has 
a better run-time complexity for very large 
inputs. However, we did not pursue this in 
our project, because the coefficient of the 
run time is unknown, and our input size is 
bounded by the parameters we define. 

The direction of the sound source is 
computed using the three peak_index 
values identified in the cross-correlation 
calculations. In this case, the name “peak_
index” is a bit of a misnomer, since these 
values actually represent the time shift, and 
not an index into an array. 

To measure the direction, the time delay 
between each pair of microphones is used 
to compute an angle for each pair. The angle 
is computed by using the distance between 
the two microphones and the distance sound 
travels in the measured time delay. That is:

angle = 

arccos
[measured time delay]×343[m/s]

[mic distance]





 	 [3]

This angle is calculated between two 
microphones, but leaves ambiguity for 
which side of the two microphones the 
sound comes from. Each time delay results 
in both the black arrow and the red arrow 
(Figure 5). We compute an angle for each pair 
of microphones and then use the arrangement 

Sound
source

Microphone

Microphone

Microphone

FIGURE 5
An example in which 
the sound comes from 
the direction indicated 
by the large blue arrow. 
The other smaller angles 
show the angle estimates 
given by the correlation 
between the two 
microphones. The tails of 
the arrows start from the 
edge that sits between 
the two microphones that 
were correlated together.

0

1 2

FIGURE 6
The arrangement of the microphones with an example sound source. Computation for the sound directions 
assumes that the sound source is far from the microphones.
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of the microphones, shown in Figure 6 to 
remove the ambiguity.

Using each time shift, we can determine 
to which microphone the correlation indicates 
that the sound is closer. For example, in Figure 
5, each pair of arrows sitting between a pair 
of microphones points toward one of the two 
microphones. In the case of Figure 5, these 
indicate microphone 0 for each of the upper 
two legs of the triangle, and microphone 1 for 
the lower leg. Using the arrangement of the 
three microphones, as long as the time shifts 
do not all indicate different microphones, a 
60-degree range can be selected, as depicted 
in Figure 5 by the dotted dividing lines. 

ANGLE ANALYSIS
As noted earlier, each angle estimate gives 

two possible angles. In Figure 5, the correct 
angle is marked in black, and the false angle 
is marked in red. For any of the 60-degree 
regions, one angle estimate always faces 

outward (of the triangular arrangement), 
and one faces inward. The remaining angle 
estimate is ambiguous. The outward-facing 
angle is the angle computed from 0-1, the 
inward-facing angle is the angle computed 
from 1-2 and the ambiguous angle is the 
angle computed from 2-0. Note that if the 
direction the sound came from was a bit 
closer to microphone 0, then the correct 
direction would be outward-facing rather 
than inward-facing, which it is now. First, 
the two angle estimates that are on known 
sides are computed and averaged together. 
Using this averaged value, the side for the 
ambiguous side is chosen by evaluating which 
is closest to the averaged value. This gives the 
last angle estimate. All three of these values 
are then averaged together, which gives the 
final angle estimate.

One of the six possible ranges of 60 degrees 
is selected by taking the sign of the time shift 
and converting it into a binary encoding. This 

int val = (peak_index[0] > 0) << 2 | (peak_index[1] > 0) << 1 | (peak_index[2] > 0);
int idxP = -1, idxN = -1, idxU = -1;
switch (val) {
  case 0b110: //0-60
    idxP = 0;
    idxN = 1;
    idxU = 2;
    break;
  case 0b010: //60-120
    idxP = 0;
    idxN = 2;
    idxU = 1;
    break;

    ...

}
int x;
for (x = 0; x < 3; x++){
  lim_index(peak_index[x]);
  angles[x] = ((double) peak_index[x])/((double)(max_diff));
  angles[x] = acos(angles[x]);
}
angles[idxP] += angles_adj[idxP];
angles[idxN] *= -1.0;
angles[idxN] += angles_adj[idxN];
lim_angles(angles[idxP]);
lim_angles(angles[idxN]);
angle = angles[idxP] + angles[idxN];
if (range_checker(idxU, angle))
  angles[idxU] *= -1.0;
angles[idxU] += angles_adj[idxU];
lim_angles(angles[idxU]);
double x_pos = cos(angles[idxP]) + cos(angles[idxN]) + cos(angles[idxU]);
double y_pos = sin(angles[idxP]) + sin(angles[idxN]) + sin(angles[idxU]);
angle = atan2(y_pos,x_pos);

LISTING 2
The code for computing the sound source's direction. The [...] section omits additional cases for brevity.
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is done in the switch statement in Listing 2. Only the first two cases were 
included in Listing 2 for brevity. It turns out the computations for each of the 
six ranges are similar, and we simply need to swap which angles estimates are 
the outward, inward, and ambiguous ones. This is done by using idxP, idxN 
and idxU, which represent the index of the outward angle, the index of the 
inward angle and the index of the ambiguous angle, respectively, where index 
here identifies which cross-correlation time shift is used. The helper function 
range_checker determines if the ambiguous angle is outward or inward, 
based on the angle estimate given. The array angles_adj holds the offset 
of each angle estimate with the baseline direction. In this project, it is the 
direction of microphone 0. The other helpers lim_angles and lim_index 
limit the range of values to within the range of angles and indices, respectively.

The low-pass filter, which averages the new angle with the old angle to 
produce the result, is not shown. The process is the same as averaging the 
three angles, except that the component values of each vector are weighted 
to set the cut-off frequency of the low pass. 

Averaging angles has a pitfall, in that angles wrap around. Say we wish to 
average two angles, 170 degrees and -170 degrees. We would like this to give the 
value 180 or -180 degrees, but a simple averaging of the angles gives the angle 0, 
which is the exact opposite of what is desired. To average the angle correctly, we 
instead convert each angle into a unit vector and average the components. The 
average vector is then converted back into an angle, giving the average angle.

FIGURE 7
Oscilloscope traces of the original waveform of the cross-correlation computation output from an early 
prototype. The upper trace illustrates recorded signal from one of the microphones, and the bottom trace 
shows the cross-correlation result from a pair of the microphone channels. Traces such as shown were used 
for debugging the system.

RESULTS
The sound localization worked reasonably 

well. Although the computation delay was 
almost indistinguishable when we ran single 
sweeps, the delay turned out to limit the max 
accuracy of the system, since it relies on an 
average of multiple sweeps. The final version 
of the device used 20cm legs on the triangular 
arrangement, an 80kHz sampling rate, and 
0.025 second sampling time. The remaining 
parameters were all derived from these values 
and computed at compile time, using C macros. 
Using multiple sweeps, we were able to get 
the system to home in on the direction of the 
sound. Figure 7 shows oscilloscope traces of 
the original waveform of the cross-correlation 
computation output from an early prototype.

The upper trace in Figure 7 illustrates 
recorded signal from one of the microphones, 
and the bottom trace shows the cross-correlation 
result from a pair of the microphone channels. 
A high signal is used on the cross-correlation 
trace to show when the data start and end. This 
gives us a point at which to set the oscilloscope 
to trigger, and allows us to see where the start 
and end of the cross-correlation are, along with 
the relative location of the peak. In this image, 
the peak is roughly centered, showing that the 
sound signals arrived at the two microphones at 
the same time. 

The plot differs from the cross-correlation 
of the swept sine wave examined in the 
math background, because this plot takes 
the absolute value of the cross-correlation. 
In testing, we found that swept sine waves 
picked up by the system almost always had 
nicely formed cross-correlation plots, such as 
the one shown in Figure 7. However, we found 
that the location of the peak wouldn’t always 
be in the same place. Further testing and 
experimentation showed that adjusting the 
circuit to have a well-defined phase shift for 
each frequency was key to making the system 
work. It’s essential that all filtering and 
amplification circuits have the same phase 
shift for every frequency.

After reworking the circuitry and moving 
to op amps with a higher gain-bandwidth 
product (from the MCP6242 to the LM4562), 
we found that the system appeared to get the 
angle correct to within 30 degrees in the 
worst case, and usually within 15 degrees of 
the correct location. In a more controlled 
environment, it is highly likely that the system 
would achieve better performance. The 
environment in which we tested the device 
was cluttered with lab equipment, which gave 
reflected sound waves and multipath 
distortion. Our code is based on examples 
given in Cornell’s ECE4760 course website [7]. 
The linked pages also contain the example 
code that our code uses as a basis.  

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials
References [1] through [7] as marked in the article can be found there
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Texas Instruments | www.ti.com
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R eal-time embedded systems 
require a specialized class of 
electronic components from 
vendors that can support the 

special needs of systems integrators. Not 
only must the hardware products operate 
across a wide range of operating modes 
and environments, they must also deliver 
performance levels meeting critical objectives 
for specific applications. But other factors 
may be even more important.

Because each project is unique, good 
system development tools are essential for 
systems integrators to deliver operational 
systems to their final customers as efficiently 
and effectively as possible. And, the vendors of 
these hardware and software products must 
help integrators choose the most appropriate 
products, support them during development, 
and then offer life cycle management solutions 
for continued product availability.

By following some key recommendations 
in making product and vendor choices, 
integrators can significantly avoid risks and 
reduce development efforts. A summary list 
of these tips is shown in Table 1.

HARDWARE TIPS
Open Standards: Increasingly, both 

government and non-government procurement 
requirements now mandate or encourage 
compliance with emerging open-system 
standards for embedded hardware components. 
Among the many benefits are interoperability 
among vendors, faster deliveries and 
competitive pricing. Instead of replacing an 
entire system for a new technology upgrade, 
open standards allow replacement of compliant 
modules more quickly and at far less cost, 
thus extending the useful life cycle of deployed 
systems.

By following open standards, vendors also 
benefit by focusing design and development 
efforts on their areas of expertise, while 
other vendors produce complementary and 
compatible products to round out the supply 
chain. This fosters government confidence in 
relying upon these open standards for future 
long-term programs.

Thermal management: As silicon device 
geometries continue to shrink, the power 
dissipation per transistor or element tends 
to drop, but this is often offset by increased 

There are many factors to consider when selecting components and board-level solutions 
for a real-time embedded system. In this article, Pentek’s Rodger Hosking steps through 
10 key tips that can help you significantly avoid risks and reduce development efforts.

10 Key Tips

By  
Rodger Hosking, 
V.P. and Co-Founder of Pentek

Choosing Real-Time 
Embedded System
Products
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clock rates. In addition, more elements can fit 
in a given size package, which drives power 
per device back up. Fine-pitch ball grid array 
packaging boosts component density of PCBs, 
often causing significant heat per slot in 
today’s embedded systems.

When designing a new embedded system, 
it is imperative that designers identify 
heat sources for each module as early 
as possible. For harsh environments, the 
popular VPX specification defines numerous 
available solutions, including forced-air, air 
flow-though, conduction-cooling and liquid 
cooling. Less demanding environments are 
often suitable for PC platforms. Selecting 

the most appropriate platform and thermal 
management strategies at the beginning of a 
project can avoid costly redesign cycles and 
serious delays.

System Interfaces: One of the toughest 
challenges in real-time system design is 
connecting system elements via data interfaces 
capable of handling the required traffic. Start 
by creating an overall system block diagram 
containing all essential elements, showing 
the data interconnect paths between them. 
Make sure that the interfaces on connected 
blocks match in type, bus width, lanes and 
data rates, and enter that information on the 
block diagram. Then, calculate and notate the 
worst-case data transfer rate required for 
each path, and compare it with the maximum 
path rate. This assessment of interconnect 
speeds will be an invaluable reference during 
development.

Some caveats to watch out for are 
interfaces that pass through several physical 
connectors, like a PCI Express link from an 
XMC module, through an XMC carrier that is 
plugged into a VPX backplane. Every connector 
can compromise maximum achievable rates. 
In these cases, modeling or functional test 
verification can help.

Shared resources, such as system memory, 
may have multiple contenders for access, 
resulting in compromised availability. Signals 
like received radar pulses can generate blocks 
of high peak rates separated intervals with no 
data. An elastic memory buffer (FIFO) may be 
required to take advantage of the low average 
rate for transfer across the interconnect path.

Synchronization: A growing number of 
phased-array antenna application, including 
5G wireless, airborne and SAR radars, and 
directional communication links, all require 
multiple element antennas to support 
beamforming for receive and transmit 
(Figure 1). Each antenna element signal 
requires precisely controlled, programmable 
phase shifts relative to all of the other 
elements.

Each signal often connects to a dedicated 
data converter where DSP circuitry can easily 
handle these precise phase shifts. However, 
the data converters must acquire and 
generate each sample at exactly the same 
sample clock edge. For large arrays, the high 
number of elements may require synchronous 
operation across multiple boards or chassis to 
handle all the channels.

Such operation can only be achieved 
if this feature is part of the board design, 
and supported with timing and sync 
generators connected to each board. If 
channel synchronization is part of the system 
requirement, make sure the boards inherently 
include this feature with recommended 

TABLE 1
Checklist of critical tips for choosing real-time embedded system products

Tips for Choosing Real-Time Embedded Systems
Choose open standard products for best value and life cycle

Define thermal management strategies early in the project

Identify all interconnections, including speeds and levels

If required, define early on how channels are synchronized

Identify all necessary clocking, timing, and DMA functions

Check for software, drivers, and examples of the above

Look for high-level C libraries with underlying source code

Identify which FPGA structures are included and supported

Decide who performs the required custom FPGA design efforts 

Ensure graphical FPGA design entry tools support your boards

Look for AXI4-complaint FPGA IP blocks from the board vendor

Look for FPGA application examples from the board vendor

Understand the board vendor’s applications support policy

Look for the board vendor’s life cycle management programs

FIGURE 1
Massive MIMO (phased array) 5G Wireless antennas can enhance signal coverage at specific elevation and 
azimuth angles for faster speeds and more users.
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connectors, cables and sync generators, 
because synchronization is otherwise nearly 
impossible to add later.

Installed Features: Real-time embedded 
boards playing typical roles in any system should 
include several basic functions supporting 
their assigned roles. For example, a single 
board computer (SBC) or PC motherboard will 
almost always implement a PCI Express root 
complex, system memory mapped across PCI 
Express address space, network interfaces, 
and CPU peripheral I/O like USB, serial and 
video. Standard CPU chip sets include virtually 
all of these functions, and supporting software 
drivers for Windows or Linux are commonly 
provided by the board vendor.

Other boards, like FPGA software radio 
modules with A/D and D/A converters, have far 
different roles and requirements. Commonly 
needed functions here include triggering, 
gating, time-stamping and synchronization 
engines that meet tight timing demands. 
Sample clock frequency synthesizers should 
accept a 10MHz system reference from an 
onboard GPS receiver or external source. 
DMA controllers must move data between the 
data converters and system memory through 
a PCI Express interface. Memory controllers 
for external SDRAM must buffer and capture 
real-time data converter streams, and 
communicate with the PCIe interface.

Unlike SBCs or PCs, which benefit from 
standard chip sets with low-level BIOS 
initialization, none of this exists for software 
radio boards. Instead, each of the hardware 
resources must be developed and incorporated 
in the FPGA. Equally important are the 
software libraries and drivers needed to make 
all of these resources work as required. Unless 
the board vendor includes them as factory 
installed features along with the supporting 
software libraries, the system integrator 
must develop, design, test, and document this 
on his own. To minimize risks, expense, and 
uncertain delays, systems integrators should 
make sure the board vendor includes these 
important resources.

DEVELOPMENT TIPS
Software Development: Although open-

system architectures help with electrical 
and mechanical interoperability, all real-time 
embedded systems are a collection of diverse 
hardware elements that must be carefully 
configured for a specific, unique application. 
Unlike mass market PC boards with plug-
and-play capabilities, most embedded 
boards must be explicitly configured to 
perform specific tasks, told how to utilize 
specific external input, output and timing 
signals and instructed what, when and how 
to communicate with other boards in the 

system. This is invariably accomplished by 
writing custom C programs that execute on 
the system controller, typically running Linux 
or Windows OS.

Even if an embedded board vendor provides 
C-callable functions for programmable 
hardware features, those offerings vary 
widely among vendors in their completeness 
and usability. Some offerings simply provide 
access to the programmable registers for the 
devices on the board, and the developer must 
use data sheets from the device manufacturer 
to figure out which bits to set. Even with a 
detailed block diagram of the board, this is 
very cumbersome.

In a far better approach, the board 
vendor offers high-level C libraries with 
well-documented command parameters that 
relate to the overall board-level operations 
performed, including references to other 
operations affected. Each of these high-level 
commands should include a well-organized 
underlying collection of low-level libraries to 
allow modification for specialized operations.

An even more elegant offering is a true 
API (application programming interface) 
with an API command processor program 
running on the system controller. In this way, 
API commands can be sent to the controller 
where they are parsed and executed, without 
needing to recompile a dedicated, executable 
C-program. API commands can be delivered to 
the controller via Ethernet, nicely supporting 
control and status functions of the embedded 
system from a remote client.

Last, numerous C program examples that 
illustrate typical operating scenarios are 
extremely valuable. They incorporate multiple 
high-level function calls with comments 
explaining the purpose of each, including why 
they must be executed in a specific order. 
Often these fully-tested examples can be 
incorporated directly into the final application 
to speed development. Of course, full C source 
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code should accompany all library functions 
and code examples.

By selecting vendors offering these 
higher-level tools, systems integrators can 
complete their development tasks much more 
quickly and will be able to support changes 
and future upgrades far more easily.

FPGA Development: FPGA designs are 
really hardware designs, in which the basic 
hardware resources of the FPGA (thousands 
of gates, adders, multipliers, registers, 
switches, memories and interfaces) are wired 
together to create custom circuits. The wiring 
connection pattern is generated by software 
tools from the FPGA vendor that compile 
descriptive instructions from the designer to 
create a “bitstream.” When loaded into the 
FPGA, the bitstream implements the required 
interconnects for the required circuit, often 
simply called “IP.”

As mentioned earlier, the board vendor 
may install some standard IP functions at the 
factory. But many customers need to install 
additional custom IP within the FPGA for 
compute-intensive, real-time algorithms. These 
algorithms are often the systems integrators’ 
“secret sauce,” comprising their critical value-

added contribution to the equipment. The 
ease of adding IP by the customer is highly 
dependent on the quality of the FPGA design 
package supplied by the board vendor.

First of all, look for a board vendor that 
includes most of the essential factory-
installed features, like the ones described 
earlier. It will dramatically reduce the overall 
FPGA design effort. No one wants to spend 
years developing a JESD204 data converter 
interface or a DDR4 SDRAM controller!

Next, be sure the board vendor supplies 
FPGA source code for all of the installed IP 
modules in the HDL format matching your 
FPGA designers’ capabilities, usually VHDL or 
Verilog.

Ideally, all IP from the board vendor will be 
delivered as AXI4 compliant blocks to match 
the style of reference IP blocks from the FPGA 
vendor. AXI4 is a widely adopted interface 
standard derived from ARM technology that 
tackles most of the housekeeping chores for 
connecting one IP block to another.

Take full advantage of the graphical design 
entry tools from the FPGA vendor, such as 
Xilinx’s Vivado IP Integrator. All of the AXI4 
blocks are visually displayed, representing 
the entire block diagram of the project 
with all interconnects shown. IP blocks and 
interconnects can be added, deleted, and 
modified with mouse clicks, and hyperlinked 
documentation is available by clicking on any 
block. After making the required changes, 
the project is recompiled to produce the new 
design and bitstream for the FPGA.

Choose a board vendor that delivers the 
entire FPGA project folder containing all the 
files needed to create the delivered FPGA 
IP, fully AXI4 compliant, with complete 
documentation, and ready to compile using 
the FPGA vendor’s tool suite.

VENDOR TIPS
New Technology: One of the major 

benefits of open standard COTS products is 
upgradability of existing systems with new 
technology by replacing a module instead of 
scrapping the system and starting over. Of 
course, depending on the upgrade, changes 
will often be needed to system software and 
perhaps even to some of the other hardware, 
interfaces or connectors. Still, this is a well-
proven strategy for extending the useful life 
of deployed equipment.

Choose board vendors with a history 
of consistently delivering open-standards 
products based on each new generation 
of FPGAs, data converters, memories, 
and system interfaces. Look for high-level 
development tools from those vendors to 
simplify the migration of software and FPGA 
designs.

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials
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FIGURE 2
Pentek Model 5950 Zynq UltraScale+ 
RFSoC 8 Channel A/D and D/A VPX 
module.
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Applications Support: Because every embedded system tends to be unique, 
systems integrators invariably encounter first-time configurations of multi-
vendor products that don’t seem to work as expected. Too often, each vendor 
blames another vendor for the problem, leaving the integrator on his own. 
Choose vendors with a proven track record of solving problems, regardless of 
who is at fault and share such experiences with other project teams.

Most board vendors offer contracts to provide technical support during 
the development phase, although the quality and timeliness of that support 
varies among vendors. When the support contract runs out, before they can 
get additional help, customers will either be asked to renew the contract, or 
for a credit card number. Some vendors offer free support for a limited time or 
number of hours, with payment required thereafter.

Be sure to ask any potential vendor for written descriptions of the applications 
support policies and costs before purchasing his products.

Life Cycle Management: Often, a significant concern for systems integrators 
is the increasing prevalence of component obsolescence, or end-of-life. This 
causes two major problems. Future component availability can jeopardize on-
going production of enough boards to support multi-year installation program 
cycles. Also, 20- to 30-year maintenance contracts to support these fielded 
systems are at risk without components needed for repairs.

Systems integrators naturally look to the board vendors for help, and 
various strategies have emerged. The simplest one is to purchase and produce 
enough additional boards up front to cover all installations over the life of the 
program, plus spares to cover the expected number of failures. End customers 
usually balk at the cost of this approach.

A very cost-effective alternative is a bonded inventory component program. 
The board vendor purchases all of the active components needed for the 
production of the total number of boards required over the life of the program, 
plus extras for repairs. The customer agrees to pay for these components, 
which the vendor reserves for him in bonded inventory. When production 
is required, those parts are used and their cost is credited toward the new 
purchase.

Since components such as PCBs and hardware can always be purchased 
as needed for later production, the cost of this bonded inventory program is 
a small fraction of the cost of full production up front, and very attractive to 
most customers.

PUTTING IT ALL TOGETHER
As an example of these strategies developed over three decades, Pentek’s 

latest offering is the Model 5950 Quartz RFSoC 3U VPX module (Figure 2). 
Following the VITA 65 OpenVPX standard, this powerful software radio board 
combines eight channels of wideband A/D and D/A conversion, a wealth of Xilinx 
Zynq UltraScale+ FPGA resources, and a multi-core Arm processor to handle 
system controller functions.

Factory-installed features include IP for wideband data acquisition, 
triggering, timing, and multi-channel synchronization. A waveform generation 
engine creates analog signals from customer-created waveform tables or 
from an on-board frequency synthesizer and chirp generator. Linked-list DMA 
controllers move data from the board to and from the PCIe Gen.3 x8 interfaces 
and two 100GigE interfaces, each capable of sustaining 12GB/s.

All of these resources are supported with software development tools under 
the Pentek Navigator Board Support package. It includes a high-level API, 
C-language libraries, a command processor for the Arm, complete C source 
code, and fully functional starter applications. For custom FPGA development 
Pentek’s Navigator FPGA Design Kit contains the complete Xilinx Vivado project 
for the Model 5950, and a library of over 140 Pentek AXI4 IP modules for adding 
new features.

Pentek offers free lifetime applications support and well-development life cycle 
management and bonded inventory programs. By introducing a constant stream 
of industry-leading, open standard board level products with the latest data 
converters and FPGAs, Pentek helps systems integrators to take earliest advantage 
of the newest technology. 
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A “system controller” can be 
defined as a system on a board or 
a platform capable of managing, 
controlling and monitoring 

the entire platform—right from power to 
communication. A system controller can be 
used not only to manage a platform, but also 
to test the peripherals of the platform, which 
reduces the cost of manufacturing test.

As electronic devices become more complex, 
the platforms for these devices also have become 
huge. Test coverage of the entire board for 
various features can become difficult especially 
when it’s a SoC that has multiple peripherals 
with different power controls on it. Such types 
of systems require an equally competent 
controller onboard that can easily manage and 
control the entire set of knobs. In my article 
“Designing Manufacturing Test Systems” 
(Circuit Cellar 352, November 2019) I discussed, 
various ways of testing a board. In this article, 
we will discuss one aspect of that with a system 
controller on board. All that said, much of this 
article will focus on the management of knobs 
and monitoring the system.

After the initial development, this can act 
as a “black box” and can sit on any other 
platform to perform different actions. This 
is presented in two parts to help readers 

understand how to design a system controller 
using Xilinx Zynq Ultrascale+ FPGAs and Xilinx 
tool chains. Here, we’ll discuss the hardware 
aspects of the system including the design, 
the building blocks, the algorithm and so on. 
In Part 2, coming next month, I’ll discuss the 
software and firmware of the project as a 
part of complete system integration.

DESIGN STEPS
Designing a system controller involves 

brainstorming from both a hardware and a 
software point of view. Figure 1 shows the 
block diagram of a generic system controller. 
A typical system controller needs a robust 
processor, a communication block, a memory 
block, a clock and a power management block. 
Any number of additional features could be 
added to this list.

As shown in Figure 1, we have used the 
Zynq Ultrascale+ FPGA as the central core of 
the system controller. The Zynq Ultrascale+ 
device is broadly divided into two parts: PL 
and PS. The PS part is the Arm processor while 
the PL part is Xilinx proprietary hardware 
block, which does actual FPGA related tasks. 
To understand details on how Zynq Ultrascale 
Plus device works, you can read the technical 
manual [1].

In his November article, Xilinx’s Nishant Mittal discussed ways of various 
ways of testing a board. In this two-part series, Nishant expands on that 
topic, this time discussing the design of an FPGA-based system controller 
built for testing and managing complex platforms. Part 1 focuses on the 
hardware aspect of the system, including the hardware design, building 
blocks, algorithm and so on.

The Hardware

By  
Nishant Mittal and  
Manoj Khandelwal

System Controller 
Manufacturing Test (Part 1)
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Ethernet is an essential part of the system 
controller because it helps to control the board 
from the distance location and enables you 
to work with the board remotely. UART is a 
critical element for debugging. The UART is an 
essential component because it enables you 
to work with the board locally by connecting 
the PC to the board via the FTDI circuitry of 
the UART using a USB Type-A or Type-B cable.

The system controller we’re building here 
is designed to run Linux onboard. In other 
words, the system controller will be able to 
boot up Linux and have Linux perform all 
of the controller’s operations. In order to 
boot Linux—or to transfer any information 
to the Linux OS—we can use an SD card or 
an onboard EMMC drive that can boot the 
processor as well as store information.

Complex platforms bring with them the 
need to have multiple knobs to control. Power 
management and clock control are the major 
knobs to be controlled. Generally, these knobs 
are all I2C devices and can be connected to a 
single bus by adjusting the pull up resistors. 
Using the I2C mux, the number of devices per 
bus can also be increased. A number of GPIO 
banks are also necessary. These GPIOs help to 
provide enable/disable signals, control signals, 
control LED representations and so forth.

BRING OUT THE TOOLS
Now that the block diagram is defined, we 

now need to need to understand the overall 
system requirements and plan the design. 
To make this design possible, we made use 
of the PetaLinux tool from Xilinx to create 
a bootable image to be loaded which has 

Xilinx board support package. In Part 2 of 
this article, we’ll discuss PetaLinux and how 
to use it to create the bootable image. Once 
booted, the Linux system then probes all the 
devices and enables them. Apart from that, 
it will also perform power management and 
clock management using PMBUS protocol and 
I2C protocol.

Other miscellaneous items such as 
EEPROM, SPI LCD and GPIOs can all be 
controlled using standalone applications 
dumped in the system controller Linux image. 
All these software aspects will be discussed in 
detail in Part 2.

Once the overall mapping of the peripherals 
is done, it’s time to create the hardware design 
of the system controller using Xilinx’s Vivado 
tool. Vivado is a hardware design tool that 
lets you not only design own IP (intellectual 
property) blocks, but use existing IPs and 
connect the blocks using the interactive GUI. 
The tool can be used to create a “bit” file and 
an “hdf”—the hardware design file. These two 
files are necessary to create the Linux image 
using the file’s Xilinx Board Support Package 
information.

HARDWARE DESIGN
The Vivado tool gives users a visual 

representation of what the hardware looks 
like and how it’s going to map to the actual 
device. If you’re not already familiar with 
Vivado, we recommend you take a look at 
the Vivado the tool guide [2] before reading 
through this section.

When you first open the Vivado tool, a 
good first step is to drag and drop the Zynq 

FIGURE 1
Typical block diagram of a system 
controller
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Ultrascale+ processor into the drawing 
window. That processor is the heart of the 
project, which will connect to all the other 
peripherals. When you double click that 
processor block of the FPGA, you can see the 
overall block diagram of the FPGA. At this 
point, the entire device is reconfigurable. 
Given that power is a major concern, it’s 
always a good idea to enable only those 
blocks that are required for the design and 

disable the rest of the blocks. Doing that not 
only consumes less current but also reduces 
the compilation time. The more hardware 
you enable, the more time the software will 
take to create a netlist.

Figure 2 shows the block diagram of the 
Zynq MP block. Here, we enable Ethernet, SD, 
eMMC, UART I2C and GPIOs. You could also 
add Soft IP, which will then get routed through 
the AXI interface to the IP. Figure 3 shows 
the hardware design for the system controller 
that we talked about in the previous section. 
Here we have an AXI I2C block that comes 
from the PL side. We have an AXI interconnect 
in between that handles all the addressing 
and clocks—along with signaling to prevent 
data loss. Because most of the blocks are on 
the PS side (Figure 2), they won’t be visible in 
the front-end GUI of Vivado.

Once this is done, we need to write the 
constraints for the design. These include 
specifying the clock max, assigning pins 
to the interfaces, setting the default state 
of the pins and so on. All that information 
goes into the .xdc file. Here is an example of 

ABOUT THE AUTHORS
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in Bangalore, India.

FIGURE 2
Block diagram of the Zynq MP as seen from Vivado tool
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some of the constraint properties:

set_property PACKAGE_PIN AC14  [get_ports EMIO_GPIO_tri_io[0] ]
set_property PACKAGE_PIN AC13  [get_ports EMIO_GPIO_tri_io[1] ]
set_property PACKAGE_PIN AA13  [get_ports EMIO_GPIO_tri_io[2] ]
set_property PACKAGE_PIN AB13  [get_ports EMIO_GPIO_tri_io[3] ]
set_property PACKAGE_PIN AB15  [get_ports EMIO_GPIO_tri_io[4] ]
set_property PACKAGE_PIN AG13  [get_ports SYSCTLR_SI570_scl_io]
set_property PACKAGE_PIN AH13  [get_ports SYSCTLR_SI570_sda_io]

We see that AG13 and AH13 are declared as scl and sda for SI570 which is the clock 
frequency generator. AA13, AC13, AC14, AB13 and AB15 are declared as tristate GPIOs. 
Similarly, you can declare your own set of GPIOs based on the platform connections to the 
system controller. At this stage, the design is ready. Now it can be compiled to generate the 
.bit and .hdf files. If the design fails, you can use gate level synthesis to understand the reason 
for failure. That can root out anything from a timing violation to some messy connection. Now 
that the design is ready, the next step is to bring the design to life using various software 
tools. Note that system controller need not be present on the same platform board. It can be 
a separate board if desired, depending on the budget or other user requirements.

CONCLUSION
In this article, we explored the features of system controller and gained an understanding 

of how it can be useful from various design perspectives. We also learned how to design the 
hardware part of the system controller using the Vivado toolchain. In Part 2 next month, we’ll 
take a deep dive into the software side of the design, and look at how to bring alive the 
hardware we designed in this part.  
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Consumer and commercial drones pose a number of tricky design challenges. 
Technology vendors have made things somewhat easier over the past year, 
offering a variety of system-oriented platforms and tools—even including 
complete development kits.

System Solutions Accelerate 
Drone Development
Fast Track 
to Flight

T he development of consumer and 
commercial drones continues 
to be a dynamic segment of the 
embedded systems industry. 

Faced with severe limits on size, weight and 
power, drone designers need to be careful with 
how they choose each and every electronic 
component. Meanwhile, huge opportunities 
abound for drone platforms that can pack in 
high levels of compute processing along with 
advanced cameras and sensor suites.

Fortunately, drone developers don’t have 
to start from scratch. A rich set of resources 
are available including board-level solutions, 
payload subsystems and development kits and 
even complete reference designs. Over the last 
12 months, new solutions along those lines 
continue to roll out from a variety of vendors 
ranging from processor companies to drone 
vendors themselves.

SYSTEM MODULE SOLUTION
Exemplifying those trends, in October 

Intrinsyc announced its tiny Open-Q uSOM 
module. The new Open-Q 845 uSOM is a 50mm 
× 25mm mini-module is based on Qualcomm’s 
Snapdragon 845 SoC (Figure 1). It’s supported 

by a Mini-ITX form-factor Open-Q 845 μSOM 
development kit. The module is designed for 
advanced robotics, drones and embedded 
IoT devices requiring the latest on-device AI 
powers, says Intrinsyc. It runs the Android 9 
Pie OS, with a promise to upgrade to the latest 
Android 10 by 2Q 2020. The module is also 
supported by a Yocto-based Linux image that 
is similarly based on Linux kernel 4.9.

Aside from the Open-Q 845 HDK for mobile 
phones released in 2018, the 8-core, 10nm-
fabricated Snapdragon 845 SoC has appeared 
on the Robotics RB3 Platform from Qualcomm 
and Thundercomm, which is built around 
a DragonBoard 845c SBC that has yet to be 
released separately. More on the RB3 later in 
this article.

The Open-Q 845 uSOM module ships with 
4GB or 6GB dual-channel LPDDR4x SDRAM at 
1866MHz, as well as 32GB or 64GB UFS flash. 
There’s also a 2.4/5GHz 802.11a/b/g/n/ac wotj 
2×2 MU-MIMO (Qualcomm WCN3990) with a 
5GHz external PA and U.FL antenna connector. 
A Bluetooth 5.x radio is also included. Media 
interfaces include DisplayPort v1.4 with USB 
Type-C support for up to 4K60 and 2x 4-lane 
MIPI-DSI D-PHY 1.2 at up to 3840x2400 10-bit 
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60fps. Camera interfaces include 3x 4-lane 
MIPI-CSI and a separate 2-lane MIPI-CSI link.

The development kit for the Open-Q 845 
μSOM is built around a 170m × 170mm carrier 
board. There’s also an optional smartphone 
sized touchscreen and 13-Mpixel camera. The 
Open-Q 845 μSOM Development Kit carrier 
runs on 12V/3A power via an included adapter 
and can also operate on a user-supplied Li-Ion 
battery.

The board provides a USB 3.1 Type-C 
port with DP and USB support and there 
are connectors for all the MIPI-DSI and -CSI 
interfaces mentioned above. Audio features 
include the WCD9340 codec, a 3.5mm audio 
combo jack and analog and digital audio I/O 
headers. The carrier has a microSD slot, a 
USB 3.1 host port and a PCIe Gen3 interface. 
There are also headers for UART, I2C, SPI and 
configurable GPIOs. Dual PCB antennas are 
also available.

SMALLEST BREADCRUMB
Among the most compelling advances 

in commercial drone usage has been the 
integration of mesh-networks to enable drone 
communications. Rajant offers a technology 
solution along those lines. Using a combination 
of wireless network nodes that Rajant calls 
Breadcrumbs and its InstaMesh networking 
software, Rajant’s Kinetic Mesh networks 
employ any-node to any-node capabilities 
to continuously and instantaneously route 
data via the best available traffic path and 
frequency—for any number of nodes, all with 
extremely low overhead. Rajant BreadCrumbs 
can communicate with any Wi-Fi or Ethernet-
connected device to deliver low-latency, high-
throughput data, voice and video applications 
across the meshed, self-healing network.

In November, Rajant released its latest 
BreadCrumb product, the DX2. The DX2 is 
Rajant’s smallest and lightest BreadCrumb, 
forming a mesh network when used in 
conjunction with its LX5, ME4 and ES1 models, 
which operate using Rajant’s proprietary 
InstaMesh protocol (Figure 2). With one 
transceiver and two external antennas, DX2 is 
lightweight and has low power consumption 
depending on transceiver configuration. 
Encased in a magnesium enclosure, the 
DX2 weighs 123g making it well suited for 
lightweight autonomous vehicles, drones and 
small robots. This very low payload, combined 
with a pocket-size footprint, makes it a good 
solution for varying degrees of autonomy and 
mobility operations as well as high bandwidth 

communication and data transmission, 
according to Rajant.

The DX2 has integrated Wi-Fi access point 
service for compatibility with millions of 
commercial off-the-shelf (COTS) client devices, 
such as laptops, tablets, smartphones, IP 
cameras, sensors and other IP devices. 
Additionally, a hidden USB connector, to be 
used for GPS or Tactical Radio over IP (TRoIP), 
lies behind a rear black rubber plug.

In compatibility with all other Rajant 
nodes, the DX2 forms a wireless Kinetic 
Mesh network that maintains continuous 
connectivity unlike traditional break-before-
make infrastructures, says Rajant. Like 
all other Rajant BreadCrumbs, the DX2 
delivers low-latency, high-throughput, fail-
proof connectivity for data, voice and video 
applications, including drone swarms. The 
DX2 is available in two models, the DX2-24 
with 2.4 GHz and DX2-50 with 5.0 GHz.

HIGH-BANDWIDTH COMMS
Focusing on the high-bandwidth side 

of drone data transfer, Silvus Technologies 
provides communications solutions for high 
bandwidth video, C2, health and telemetry 

FIGURE 2
The DX2 is Rajant’s smallest and 
lightest BreadCrumb, forming a mesh 
network when used in conjunction with 
its LX5, ME4 and ES1 models, which 
operate using Rajant’s proprietary 
InstaMesh protocol.

FIGURE 1
Based on Qualcomm’s Snapdragon 
845 SoC, the tiny Open-Q uSOM 
is a 50mm x 25mm mini-module  
designed for advanced robotics drones 
and embedded IoT devices requiring 
the latest on-device AI powers.
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data. In September, Silvus announced 
a partnership with Silent Falcon UAS 
Technologies, manufacturer of the Silent 
Falcon, a solar electric, fixed wing, long 
endurance, long range drone (Figure 3). The 
Silent Falcon drone integrates Silvus’ advanced 
technology MIMO MANET Streamcaster 
communications systems in its drone systems 
including its new SF ATAK Field Observer Kit.

Introduced in 2019, the most recent 
models of the Streamcaster radios are Silvus’ 
Enhanced 4000 series. The new radios provide 
a user-customizable multilocation switch for 
loading presets and zeroizing crypto. They 
have improved connectors and tie-down points 
for weather caps and feature IP68 enclosures 
(submersible to 20m). Smart battery 
technology provides % monitoring. The units 
also feature FIPS140-2 Level 2 encryption and 
MANET Interference Avoidance (MAN-IA).

The SC4200E model in the Enhanced series 
is a 2×2 MIMO radio. It is well suited for use 
in portable and drone applications where size, 

weight, power or cost are key. The unit provides 
up to 4W of output power (up to 8W effective 
performance thanks to TX Beamforming). The 
SC4200E is available in three form factors to 
suit a variety of applications: Rugged “brick” 
(externally powered), rugged handheld (with 
twist-lock battery connector) and non-rugged 
OEM (for embedding in custom products and 
sub-systems).

Silent Falcon has previously used the Silvus 
MIMO MANET communications systems for a 
wide variety of drone long range commercial 
applications in oil and gas, pipeline, electric 
power transmission, mapping and surveying 
markets. It has also been successfully 
deployed in intelligence, surveillance and 
reconnaissance; search and rescue and long-
range border patrol missions. It’s also been 
used in extreme environmental conditions 
while assisting the US Department of Interior 
in wildfire fighting operations.

Silent Falcon recently introduced its three 
radio SF TriAntenna Ground Control Station, 
powered by Silvus Streamcaster components. 
The system increases the reliability, 
connectivity and bandwidth of the Silent Falcon 
system. The comm system's capabilities have 
been further enhanced by the addition of the 
SF ATAK Field Observer Kit, a small, portable 
kit that provides live streaming videos with 
map overlays on tablets and smartphones to 
operators on the ground who need this vital 
information in real time.

SNAPS AND MANIFOLD 2
Drones like DJI’s Phantom and Matrice 

models embed flight controllers that run 
a proprietary operating system. But, in 
2015, the company announced a Manifold 
development computer for its Matrice 100 
drone that runs Ubuntu on a Nvidia Tegra 
K1. In June 2019, DJI unveiled a more 
powerful Manifold 2 computer with a choice 
of Nvidia Jetson TX2 and Intel Core i7-8550U 
processors (Figure 4). Canonical followed 
up by announcing that, not only will Ubuntu 
16.04 return as the pre-installed OS for the 
device, but that it will include support for 
Ubuntu snaps application packages.

Ubuntu snaps are containerized software 
packages that work interchangeably across 
embedded, desktop and cloud-based Ubuntu 
distributions. Found on embedded Linux 
devices ranging from LimeSDR boards to 
Orange Pi PCs, they offer built-in security, 
automated updates and transaction rollback 
support. They also come with an online 

FIGURE 3
The Silent Falcon—a solar 
electric, fixed-wing drone—
integrates Silvus Technologies’ 
MIMO MANET Streamcaster 
communications systems in its 
drone systems including its new 
SF ATAK Field Observer Kit.

For detailed article references and additional resources go to:

www.circuitcellar.com/article-materials

RESOURCES
Aerotenna | www.aerotenna.com

Intrinsyc Technologies | www.intrinsyc.com

Nvidia | www.nvidia.com

NXP Semiconductors | www.nxp.com

Qualcomm | www.qualcomm.com

Rajant | www.rajant.com

Silvus Technologies | www.silvustechnologies.com
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FIGURE 4
The Manifold 2 will be the first drone 
system to offer snaps, which will 
enable its functionality to be altered, 
updated and expanded over time.

marketplace for sharing and selling different 
snaps applications. The Manifold 2 will be 
the first drone system to offer snaps, which 
will enable its functionality to be “altered, 
updated and expanded over time,” according 
to Canonical. Snaps will make it easier to 
manage large fleets of drones, as well as 
develop vertical applications that can be 
shared and modified for other use cases.

Ubuntu offers DJI drone users support 
for Linux, Nvidia CUDA, OpenCV and ROS 
(Robot Operating System). The Ubuntu-driven 
Manifold 2 is well suited for the research and 
development of professional applications 
and can access flight data and perform 
intelligent control and data analysis. The 
Manifold 2 can be integrated on DJI enterprise 
drones including the Matrice 210 series and 
Matrice  600 series, as well as its separately 
available N3 Flight Controller and A3 Flight 
Controller. The computer can process complex 
image data onboard the drone and get results 
immediately and can program drones to fly 
autonomously while identifying objects and 
avoiding obstacles, says DJI.

The Manifold 2 can act either as a 
companion computer or as a control computer 
over the flight controller. The system can be 
integrated into the drone’s internal systems 
and sensors using DJI’s software development 
kit. The Manifold 2 offers users a choice of 
two processing platforms, both of which run 
Ubuntu 16.04 with snaps. The first is the “GPU 
Model” (Manifold2-G) with Nvidia’s Jetson 
TX2, which offers a more powerful, hexa-core 
update to the Manifold 1’s Nvidia Tegra K1.

DJI lists different applications for the two 
models. The GPU Model is said to be designed 
for AI, object recognition, motion analysis 
and image processing. The CPU Model is for 

autonomous flight, real-time data analysis, 
ground station connectivity and robotics. 
Both Manifold 2 versions have a -25°C to 45°C 
tolerant, 91mm × 61mm × 35mm enclosure, 
down from 110mm × 110mm × 26mm on the 
Manifold 1. Despite the smaller footprint, the 
new models are heavier than the under 200g 
original. The Jetson TX2-based GPU model 
weighs in at 230g while the Coffee Lake-based 
CPU Model is 205g.

COMPLETE DRONE DEV KIT
We’ve discussed several drone 

development kits in Circuit Cellar in recent 
years. These kinds of kits provide all the 
components needed to get a drone platform 
up and running. An example is the Smart 
Drone Development Platform from Aerotenna. 
The kit is equipped with microwave radar 
collision-avoidance sensors, a radar altimeter 

FIGURE 5
The Smart Drone Development 
Platform from Aerotenna is equipped 
with microwave radar collision-
avoidance sensors, a radar altimeter 
and an FPGA-based flight controller.
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and an FPGA-based flight controller (Figure 5).
The kit’s OcPoC Zynq Mini Flight Controller 

is an FPGA-based flight controller capable of 
triple redundant GPS, compass and IMU. The 
unit is pre-loaded with the PX4 and Ardupilot 
flight control stacks. PX4 is the largest 
commercially deployed open source flight 
stack and supports contemporary airframe 
architectures including VTOL aircraft, 
multicopter and rover profile. The μLanding 
radar altimeter can perform in all weather 
conditions and challenging terrains and has 
maximum altitude range of 150m with and 
altitude accuracy of 2cm. Its update rate is 
766Hz (every 1.31ms).

The development kit also includes three 
μSharp-Patch collision avoidance radar 
sensors. These sensors scan the front, left 
and right side of the vehicle, detecting and 
locating obstacles on the horizon quickly 
and reliably and a maximum range of 120m. 
A pre-assembled quadcopter, carbon fiber 
airframe is provided in the kit. It includes 
GPS/compass, foldable arms for ease of 
transport and modular component design for 
simple maintenance and repair. It can do flight 
times up to 50 minutes (16000mAh battery, 
no payload). Total weight with airframe, pre-
assembled flight controller and sensors is 
1.9kg. Maximum takeoff weight with battery 
is 4.0kg.

DEV KIT RUNS ROS
Among the drone development kits 

introduced in 2019 was the Robotics RB3 Platform 
co-developed by Qualcomm and Thundercomm 
(Figure 6). The platform includes an octa-core 
Snapdragon 845 via a new “DragonBoard 845c” 
96Boards SBC and tracking cameras. While 
the platform appears to be marketed toward 
terrestrial robots, Qualcomm told us that it's 
also suited for developing drones.

The RB3 platform integrates key capabilities 
such as high-performance heterogeneous 
computing, 4G/LTE connectivity including 
CBRS support for private LTE networks, a 
Qualcomm AI Engine for on-device machine 
learning and computer vision, hi-fidelity 
sensor processing for perception, odometry 
for localization, mapping and navigation, 
advanced security and Wi-Fi connectivity. 
Support is also planned for 5G connectivity.

The platform currently supports Linux and 
Robot Operating System (ROS), while also 
including support for the Qualcomm Neural 
Processing software development kit (SDK) 
for advanced on-device AI, the Qualcomm 
Computer Vision Suite, the Qualcomm Hexagon 
DSP SDK and Amazon’s AWS RoboMaker, with 
plans for Ubuntu Linux support.

The platform’s hardware development 
kit contains the new purpose-built robotics-
focused DragonBoard 845c development 
board, based on the Qualcomm SDA/SDM845 
SoC and compliant with the 96Boards open 
hardware specification to support a broad 
range of mezzanine-board expansions. 
Optional elements for the kit include a 
connectivity board; an image camera for 
superb hi-res photo, 4K video capture and 
AI-assisted detection and recognition of 
people and objects; a tracking camera for 
path planning and obstacle avoidance using 
visual simultaneous localization and mapping 
(vSLAM); a stereo camera for navigation; and a 
time-of-flight camera for people, gesture and 
object detection even in low light conditions.

KIT FOR DRONE CHALLENGE
There’s been a history of processor vendors 

providing drone development kits—Intel and 
Qualcomm, for example. NXP Semiconductors 
for its part, has put a twist on this trend by 
making a drone development kit part of an 
annual drone development contest. Called 
the HoverGames Challenges, participants use 
NXP’s HoverGames drone development kit. 
The hardware and software of the developer 
kit is open, flexible and modular and includes 

FIGURE 6
The RB3 platform includes an octa-core Snapdragon 845 via a “DragonBoard 845c” 96Boards SBC and 
tracking cameras. It integrates key capabilities such as high-performance heterogeneous computing, 4G/
LTE connectivity including CBRS support for private LTE networks, advanced security and Wi-Fi connectivity.
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professional, automotive and industrial-grade 
components enabled by the PX4 flight stack. 

The HoverGames KIT-HGDRONEK66 kit 
(Figure 7) provides the mechanical and other 
components needed to evaluate the RDDRONE-
FMUK66 flight management unit and adds BLDC 
motor control capabilities and a mechanical 
platform, on which it can be mounted. This 
developer kit may be used as part of and 
contains the components needed for the 
HoverGames coding challenges. NXP points out 
that this is a professional developer kit, not a 
complete functional system and includes no 
software. The flight management unit (FMU) is 
supported by the business-friendly open source 
PX4 flight stack. In addition, a separate suitable 
hobby-type LiPo battery and country-specific 
telemetry radio will be required.

When assembled, the frame has 
appropriate the additional space necessary 
to mount other components such as an 

adapter for Rapid IoT, NXP Freedom boards, 
or a companion computer such as i.MX 8M 
Mini to be used as a vision processor running 
Linux and ROS. The HoverGames drone and 
rover development platform is very flexible, 
fully open for development of robotics, 
control algorithms, security networking and 
communications protocols and can include 
another add-on component, companion 
computer, software or associated solutions.

Today’s quadcopter style consumer and 
commercial drones couldn’t exist without 
today’s high levels of chip integration. As 
developers push for more autonomous 
operations and AI aboard drones, they’ll 
continue to look toward SoC-based solutions 
to offer improved functionally without added 
size and weight. Fortunately, technologies 
and solutions such as those covered in this 
article can help drone system developers to 
get to market—and to flight—faster. 

FIGURE 7
Top: The HoverGames KIT-
HGDRONEK66 kit provides the 
mechanical and other components 
needed to evaluate the RDDRONE-
FMUK66 flight management unit and 
adds BLDC motor control capabilities 
and a mechanical platform, which 
it can be mounted on. Bottom: an 
assembled HoverGames RDRONE 
drone.
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Analog ICs Boast Battery 
Management Innovations

By Jeff Child, 
Editor-in-Chief

Perfecting 
Power

Boosting battery life and efficiency is a major goal for many embedded systems. Analog IC vendors 
are smoothing the way with innovative chips for monitoring, controlling and charging batteries.

FIGURE 1
The MAX17301 and the MAX17311 fuel gauge ICs offer configurable settings for battery safety and allow fine tuning of voltage and 
current thresholds based on various temperature zones.

M anaging battery power is a 
critical function for all sorts 
of battery-powered systems, 
including power tools, wearable 

electronics, IoT edge devices and electric 
vehicles. Innovations in power management 
ICs, fuel-gauge ICs, battery monitoring ICs 
and more are helping to provide improved 
power efficiency for diverse applications.

There are many facets to managing 
batteries in embedded systems. To meet 
the ever-present goal of extending battery 
lifetimes and battery efficiencies requires 
solutions for monitoring and charging 
batteries, as well as efficient power conversion 
devices. Over the past 12 months, analog ICs 
vendors have rolled out several innovative 
solutions both for portable, battery-powered 
systems and for the particular needs for 
electric vehicle battery management.

FUEL GAUGE ICS
Along those lines, in August Maxim 

Integrated announced fuel gauge ICs that 
company claims offer the most configurable 
settings for battery safety in the industry 
and uniquely allow fine tuning of voltage 

and current thresholds based on various 
temperature zones. The newest 1-cell, pack-
side ICs in this portfolio are the MAX17301 
and the MAX17311 (Figure 1). These ICs also 
offer a secondary protection scheme in case 
the primary protection fails. This secondary 
protection scheme permanently disables the 
battery by overriding a secondary protector 
or blowing a fuse in severe fault conditions.

All ICs in the family are equipped with 
Maxim’s patented ModelGauge m5 EZ 
algorithm that delivers highest state-of-
charge (SOC) accuracy that on average 
offers 40% better accuracy than competitive 
offerings and eliminates the need for battery 
characterization. These fuel gauges also offer 
the industry’s lowest quiescent current (IQ)—
up to 80% lower than the nearest competitor 
according to Maxim, and feature SHA-256 
authentication to safeguard the systems from 
counterfeit batteries.

Conventional battery protectors monitor 
voltage and current, and in some cases 
include temperature monitoring, says Maxim. 
These options make the system vulnerable to 
unexpected crashes because battery SOC isn’t 
factored in when triggering an undervoltage 
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cut-off decision. The market lacks a solution 
that allows deeper configuration of voltage 
or current thresholds based on multiple 
temperature environments.

Maxim's devices provide advanced battery 
protection to ensure safe charging and 
discharging in a wide range of applications with 
2-level Li-ion protector control for abnormal 
voltage, current and temperature conditions. 
The ICs protect against counterfeiting and 
cloning with SHA-256 authentication and 
provide unique as well as dynamic keys for 
every battery.

To enable high accuracy, the chips offer 
cycle+ age forecasting that provides easy-to-
understand prediction of remaining battery 
life for battery replacement planning or to 
control fast-charging. Battery life logging 
stores the history of operating conditions 
experienced by the pack over its lifetime. 
Support for long product shelf-life and 
runtime is served by an operating IQ of 24µA 
active/18µA low power with protector FETs 
"on" and 7µA with protector FETs "off."

BATTERY CHARGER IC
With its focus on the charging side of 

battery management, in September Texas 
Instruments (TI) introduced a switching 
battery charger IC that supports a 
termination current of 20mA. Compared to 
competing devices, which typically support a 
termination current higher than 60mA, TI’s 
BQ25619 enables 7% higher battery capacity 
and longer runtime, says TI. The BQ25619 
charger also delivers three-in-one boost 
converter integration and ultra-fast charging, 
offering 95% efficiency at a 4.6V and 0.5A 
output (Figure 2). Additionally, with the 
industry’s lowest quiescent current, the new 
charger can double the shelf life of ready-to-
use electronics.

The BQ25619 charger is designed to help 
engineers design more efficiently for small 
medical and personal electronics applications 
such as hearing aids, earbuds and wireless 
charging cases, IP network cameras, patient 
monitoring devices and personal care 
applications.

An ultra-low termination current of 20mA 
increases battery capacity and runtime by up 
to 7%. The BQ25619’s settable top-off timer 
further increases run time, enabling users 
to charge their devices less frequently. The 
BQ25619 reduces battery leakage down to 6µA 
in ship mode, which conserves battery energy 
to double the shelf life for the device. While in 
battery-only operation, the device consumes 
only 10µA, to support standby systems.

The BQ25619 includes integrated charge, 
boost converter and voltage protection to 
support efficient design for space-constrained 

applications and eliminate the external 
inductor required by previous-generation 
charger ICs. Due to its integrated bidirectional 
buck or boost topology, the BQ25619’s 
charging and discharging capabilities require 
just a single power device. The device is 
offered in a 24-pin wafer quad flatpack no-
lead (WQFN) package. The 30-pin BQ25618, 
with similar features, is offered in a smaller 
wafer chip-scale package (WCSP).

WIRELESS CHARGING IC
Many wearable devices aren’t suited to be 

powered by replaceable batteries. As a result, 
they typically need to be recharged. Wireless 
(cordless) battery charging is beginning to 
take hold as a solution. Feeding such needs, 
Analog Devices offers its LTC4126 as an 
expansion of its offerings in wireless battery 
charging. The LTC4126 combines a wireless 
powered battery charger for Li-Ion cells with 
a high efficiency multi-mode charge pump 
DC-DC converter, providing a regulated 1.2V 
output at up to 60 mA (Figure 3).

Charging with the LTC4126 allows for 
a completely sealed end product without 
wires or connectors and eliminates the need 
to constantly replace non-rechargeable 
(primary) batteries. The efficient 1.2V 
charge pump output features pushbutton on/
off control and can directly power the end 
product’s ASIC. This greatly simplifies the 
system solution and reduces the number of 
necessary external components. The device is 
ideal for space-constrained low power Li-Ion 
cell powered wearables such as hearing aids, 
medical smart patches, wireless headsets and 
IoT devices.

FIGURE 2
The BQ25619 charger delivers three-in-one boost converter integration and ultra-fast charging, offering 95% 
efficiency at a 4.6V and 0.5A output.
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The LTC4126, with its input power 
management circuitry, rectifies AC power 
from a wireless power receiver coil and 
generates a 2.7V to 5.5V input rail to power 
a full-featured constant-current/constant-
voltage battery charger. Features of the 
battery charger include a pin selectable 
charge voltage of 4.2V or 4.35V, 7.5mA 

charge current, automatic recharge, battery 
temperature monitoring via an NTC pin, and 
an onboard 6-hour safety charge termination 
timer. 

Low-battery protection disconnects the 
battery from all loads when the battery voltage 
is below 3.0V. The LTC4126’s charge pump 
switching frequency is set to 50kHz/75kHz to 
keep switching noise out of the audible range, 
ideal for audio related applications such as 
hearing aids and wireless headsets. The IC is 
housed in a compact, low profile (0.74 mm) 
12-lead 2mm × 2mm LQFN package. The 
device is guaranteed for operation from –20°C 
to 85°C in E-grade.

SOLUTION FOR 14 Li-IOn CELLS
Electric and hybrid vehicles have very 

special requirements when it comes to 
managing their battery subsystems. Feeding 
those needs, Renesas Electronics in August 
announced its fourth-generation Li-Ion 
battery management IC that offers high 
lifetime accuracy. The ISL78714 provides 
accurate cell voltage and temperature 
monitoring, along with cell balancing and 
extensive system diagnostics to protect 14-
cell Li-Ion battery packs while maximizing 
driving time and range for hybrid and electric 
vehicles (Figure 4).

The ISL78714 monitors and balances up to 
14 series-connected cells with ±2mV accuracy 
across automotive temperature ranges, 
letting system designers make informed 
decisions based on absolute voltage levels. 
The ISL78714 includes a precision 14-bit 
analog-to-digital converter and associated 
data acquisition circuitry. The device also 
offers up to six external temperature inputs 
(two available from GPIOs) and includes fault 
detection and diagnostics for all key internal 
functions.

The ISL78714 meets the stringent 
reliability and performance requirements of 
battery pack systems for all electric vehicle 
variants, with safety features, enabling 
automotive manufacturers to achieve the 
ISO 26262 automotive safety integrity 
level (ASIL  D). In addition, the ISL78714 
monitors and reads back over/under voltage, 
temperature, open wire conditions, and fault 
status for 112 cells in less than 10ms, or 
70 cells in 6.5ms.

Multiple ISL78714s can be connected 
together via a proprietary daisy chain that 
supports systems up to 420 cells (30 ICs) 
that provide industry-leading transient and 
EMC/EMI immunity, exceeding automotive 
requirements. The ISL78714’s daisy-chain 
architecture uses low-cost capacitive or 
transformer isolation, or a combination of 
both, with twisted pair wiring to stack multiple 

RESOURCES
Analog Devices | www.analog.com

Maxim Integrated | www.maximintegrated.com

Renesas Electronics | www.renesas.com

Texas Instruments | www.ti.com

FIGURE 3
The LTC4126 combines a wireless powered battery charger for Li-Ion cells with a high efficiency multi-mode 
charge pump DC-DC converter, providing a regulated 1.2V output at up to 60mA.

FIGURE 4
The ISL78714 provides accurate cell voltage and temperature monitoring, along with cell balancing and 
extensive system diagnostics to protect 14-cell Li-ion battery packs while maximizing driving time and range 
for hybrid and electric vehicles.

http://www.analog.com
http://www.maximintegrated.com
http://www.renesas.com
http://www.ti.com
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battery packs together while protecting 
against hot plug and high voltage transients. 
A watchdog timer automatically shuts down a 
daisy-chained IC if communication is lost with 
the master MCU. Mass production quantities 
of the ISL78714 Li-ion battery management IC 
are available now in a 64-lead TQFP package.

ELECTRIC VEHICLE DESIGN WIN
In December, Analog Devices (ADI) 

announced that Rimac Automobili is planning 
to incorporate ADI’s precision battery 
management system (BMS) ICs into Rimac’s 
BMS. ADI’s technology provides Rimac’s BMS 
with the ability to extract maximum energy 
and capacity out of its batteries by calculating 
reliable SOC and other battery parameters at 
any given time, according to ADI.

The Rimac C_Two is a fully electric hypercar 
capable of speeds of up to 258 miles per hour. 
With 1,914 horsepower under the hood, the  
C_Two accelerates 0 to 60 mph in 1.85 seconds 
and 0 to 186 mph in 11.8 seconds. To 
support these high-performance outputs, the 
Rimac team designs and engineers superior 
underlying technologies, such as electric 
drivetrain and battery packs.

BMS technology acts as the “brains” 
behind battery packs by managing the 
output, charging and discharging as well as 
providing precision measurements during 
vehicle operation. A BMS also provides vital 
safeguards to protect the battery from 
damage. A battery pack consists of groups of 
individual battery cells that work seamlessly 
together to deliver maximum power output to 
the car. If the cells go out of balance, the cells 
can get stressed leading to premature charge 
termination and a reduction in the battery’s 
overall lifetime. ADI’s battery management 
ICs deliver the highly accurate measurements, 
resulting in safer vehicle operation and 
maximizing vehicle range per charge.

ASIL-D COMPLIANT IC
Safety standards compliance is a key concern 

in electric vehicles. Automotive designers can 
now achieve ASIL-D compliance for automotive 
applications using just a single chip for a safer, 
more cost-effective battery management 
system with the MAX17853 battery monitor IC 
from Maxim Integrated (Figure 5). Targeting 
mid-to-large cell count configurations for 
automotive applications, such as battery packs 
for electric and hybrid vehicles, MAX17853’s 
flexible architecture called Flexpack enables 
engineers to rapidly make changes to their 
module configurations to quickly respond to 
market demands.

Achieving safety compliance in automotive 
applications can require adding redundant 
components to the system. Maxim claims that 

the MAX17853 is the only ASIL-D-compliant 
IC for mid-to-large cell count configurations, 
enabling engineers to create a system that 
meets the highest level of safety for voltage, 
temperature and communication. Also 
contributing to higher safety is the device’s 
advanced battery cell balancing system, which 
automatically balances each cell by time and 
voltage to minimize risk of overcharging.

System developers can achieve all this 
without adding extra components such as 
redundant comparators to help achieve 
smaller form factors, says Maxim. In addition, 
the MAX17853 reduces system bills of 
materials (BOM) cost by up to 35% compared 
to competitive solutions to allow the customer 
to achieve lower overall cost for their BMS 
solution.

Flexibility is also important because 
engineers typically must design and qualify 
separate boards and BOMs for each different 
module configuration. The MAX17853 is the 
industry’s only IC supporting multiple channel 
configurations (8 to 14 cells) with one board. 
This enables engineers to reduce design time 
by up to 50% through reduced validation and 
qualification time. For example, they can cut 
their development time and qualification 
efforts in half by using the same board for 8s 
and 14s modules.  

FIGURE 5
Maxim claims that the MAX17853 is the only ASIL-D-compliant IC for mid-to-large cell count configurations, 
enabling engineers to create a system that meets the highest level of safety for voltage, temperature and 
communication.
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COM Express has emerged as one of the most popular standards-based form factors for embedded 
systems. COM Express modules serve as a complete computing core that can be upgraded when 
needed, while the application-specific I/O on the baseboard can remain the same.

Datasheet:  

COM Express Boards
Compact Performance

C OM Express has all the aspects 
that make a successful embedded 
board-level form factor: a large 
ecosystem of vendors that make 

COM Express boards, an active and innovative 
standards organization in the form of PICMG 
(PCI Industrial Computer Manufacturers Group) 
and a wide application base of engineers hungry 
to embedded the technology into their systems. 
As ever more powerful processors emerge, 
embedded computing modules like COM 
Express boards will only get more powerful. 
The approach of a two-board solution—a COM 
Express module and an I/O baseboard—has 
caught on while slot-card system architectures 
have begun to lose favor. According to multiple 
research reports, the computer-on-module 
(COM) market is expanding rapidly and is 
expected to reach over $1 billion by 2022.

In November, the PICMG COM-HPC 
technical subcommittee approved the pinout 
of its high-performance Computer-on-Module 
specification. The new COM-HPC standard 
is now entering the home stretch for the 
ratification of version 1.0 of the specification, 
which is scheduled for the first half of 2020. 
COM manufacturers and carrier board designers 
who are active in the COM-HPC workgroup can 

now embark on their first edge computing 
designs based on this pre-approved data, with 
the expectation to bring them to market in time 
with the launch of new high-end embedded 
processor generations from Intel and AMD 
in 2020. PICMG says the new COM-HPC is in 
parallel to existing COM Express efforts. This 
effort is intended to complement rather than be 
a replacement for COM Express.

COM Express is widely used in industrial 
automation, defense/aerospace, gaming, 
medical, transportation, IoT and other 
applications. Here's an example of a medical 
application using COM Express: In order to 
optimize emergency patient care, the Swiss 
IT company Imtmedical, a manufacturer of 
solutions in medical ventilation technology, 
used COM Express technology from Kontron for 
a ventilation system they built in partnership 
with IMT AG. The resulting bellavista 950 and 
1000 products, released in 2013, use a COM 
Express module from Kontron as their core 
computing elements (Figure 1).

The representative set of COM Express 
board in this section are limited to products 
announced in the last 12 months. In the digital 
version of this article, you can access links to 
the actual datasheets of each product. 

FIGURE 1
Imtmedical’s bellavista 950 and 1000 ventilator products, released in 2013, 
use a COM Express module from Kontron as their core computing elements.
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Type 6 COMe Board Targets 
Edge Computing

Aaeon’s COM-CFHB6 is built to the 
COM Express Type 6 form factor. It 
features a wide range of processors 
from the Intel Celeron to Intel Xeon, and 
the 8th and 9th Generation Intel Core 
processors (Coffee Lake H/Coffee Lake 
Refresh). The COM-CFHB6 supports low 
power 25W processors, well suited for 
mobile applications, up to 45W 6-core 
Xeon server CPUs.

• Intel Coffee Lake-H 8th / 9th Ge i3/
i5/i7/ Xeon-E processors

• 3x SODIMM DDR4 2666 memory up 
to 48GB, ECC support (by SKU, with 
CM246 PCH)

• Intel I219 Gbit Ethernet
• VGA, 18/24-bit 2ch LVDS or 4-lane 

eDP, DDI up to 3
• High definition audio interface
• SATA x4, USB2.0 x8, USB 3.0 x4
• PCI-Express [x1] x8, PCI-Express 

[x16] x1
• GPIO x 8, SMbus, I2C, LPC
• COM Express Basic size, pin-out 

Type 6, 125mm x 95mm

AAEON
www.aaeon.com

COMe Board Serves up  
15W Quad-Core Processors

ADLINK Technology’s cExpress-WL 
modules feature the 8th generation Intel 
Core and Celeron processors (formerly 
codenamed Whiskey Lake-U) with up 
to 4  cores and up to 64GB memory 
capacity. The cExpress-WL is suited for 
applications such as data acquisition 
and analysis, image processing, and 4K 
video transcoding and streaming at the 
edge.

• 8th gen quad/dual-core Intel Core 
processors

• Up to 64GB dual channel non-ECC 
DDR4 at 2133/2400MHz

• 2x DDI channels, 1x LVDS, one opt. 
VGA, supports up to 3 independent 
displays

• Up to eight PCIe lanes, GbE
• Up to 3x SATA 6 Gb/s, four USB 3.1 

Gen2 and four USB 2.0
• Supports Smart Embedded 

Management Agent (SEMA) functions
• Operating temperature: -40°C to 

+85°C (optional)

ADLINK Technology
www.adlinktech.com

COMe Type 6 Card Sports 
Intel H-Series Processor

Advantech’s high-end SOM-5899 
series COM Express Type 6 Module is 
designed with 8th and 9th Gen Intel 
Core H-series processors. Compared 
with previous generations, the SOM-
5899 is enhanced with six cores 
for better multithreaded compute-
intensive application performance.

• COM Express R3.0 Type 6 Basic 
module

• 8th and 9th Gen Intel Core Xeon and 
i7/i5/i3/Celeron processors

• 2 to 6 Core CPU with up to 96GB 
Non-ECC memory and up to 48GB 
ECC memory

• 3x DDI 4k resolution
• 4x USB3.1 Gen 2 (10Gbps) / PEG x16 

and 8x PCIe Gen3 (8Gbps)
• 4x SATA III ports and supports AHCI 

and RAID mode
• Supports Advantech iManager, 

WISE-PaaS/DeviceOn

Advantech
www.advantech.com

DATASHEET URLS:

AAEON   www.aaeon.com/en/p/com-express-modules-com-cfhb6

ADLINK Technology   www.adlinktech.com/Products/Computer_on_Modules/COMExpressType6Compact/cExpress-WL

Advantech   https://advdownload.advantech.com/productfile/PIS/SOM-5899/file/SOM-5899_5899R_DS(120219)20191202190722.pdf

http://www.aaeon.com
http://www.adlinktech.com
http://www.advantech.com
http://www.aaeon.com/en/p/com-express-modules-com-cfhb6
http://www.adlinktech.com/Products/Computer_on_Modules/COMExpressType6Compact/cExpress-WL
https://advdownload.advantech.com/productfile/PIS/SOM-5899/file/SOM-5899_5899R_DS(120219)20191202190722.pdf
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Extended Temp Support

Eurotech’s CPU-162-23 brings the 
computational performance and RAM 
capacity of a server to the field. It 
supports extended temperature range 
(-40 to +85°C). The soldered-down 
CPUs and ECC memory further increase 
reliability in demanding applications. 
The board provides full integration 
with Eurotech IoT Edge Framework 
Everyware Software Framework (ESF), 
providing native connectivity with many 
IoT Cloud services

• HPEC and micro server ready
• Intel Pentium and Xeon D-1500 CPUs
• Up to four SO-DIMM sockets for a 

total of 64GB DDR4 with or without 
ECC

• 2x 10Gbit Ethernet
• Up to x32 PCIe lanes
• 2x SATA 3.0 ports, 4x USB 3.0 and 4x 

USB 2.0 ports
• Rugged and fanless

Eurotech
www.eurotech.com

COM Express Card Offers  
14 Different Processor Options

The conga-TS370 Type 6 COM 
Express board from Congatec supports 
14 processor variants. In July, the 
company added ten new variants to 
the original four. The new ones include 
four Intel Xeon, three Intel Core, two 
Intel Celeron and one Intel Pentium 
processor—all based on the same Intel 
microarchitecture (codenamed Coffee 
Lake H). This enables Congatec to 
provide all 10 new processors on one 
COM Express module design.

• 8th gen Intel Core processor with up 
to 6 Cores

• Intel Xeon processors for data center 
applications

• Support for USB 3.1 Gen2 with 
10Gbit/s

• Intel Optane memory support
• ECC memory support
• Up to 64GB dual channel DDR4 

memory

Congatec
www.congatec.com

COMe Type 6 Board Features 
AMD Ryzen Embedded SoC

The PCOM-B701 from American 
Portwell is a Type 7 COM Express basic 
(125mm x 95mm) module is designed 
with the Intel Atom processor C3000 
product family (codenamed Denverton). 
Specifically, the COM Express 3.0 
specification’s Type 7 pinout, when 
compared to the Type 6 pinout, trades 
all the graphics interfaces for up to 
four 10 GbE ports and a total of 32 PCIe 
lanes.

• COM Express Type 6 Basic form 
factor

• Up to 4 Ryzen cores, AMD Radeon 
GCN compute units

• Supports dual channel ECC DDR4 
SO-DIMM horizontal socket (up to 
16GB)

• Supports four 4K displays
• Supports USB 2.0/3.0, 1xSATA,
   1x PCIe x8 and 4x PCIe x1
• Next-generation AMD secure 

processor

American Portwell
www.portwell.com

COM Express Boards

DATASHEET URLS:

American Portwell   www.portwell.com/pdf/embedded/MEDM-B603.pdf

Congatec   www.congatec.com/fileadmin/user_upload/Documents/Datasheets/conga-TS370.pdf

Eurotech   www.eurotech.com/en/products/boards-modules/comexpress/cpu-162-23

http://www.eurotech.com
http://www.congatec.com
http://www.portwell.com
http://www.portwell.com/pdf/embedded/MEDM-B603.pdf
http://www.congatec.com/fileadmin/user_upload/Documents/Datasheets/conga-TS370.pdf
http://www.eurotech.com/en/products/boards-modules/comexpress/cpu-162-23
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DATASHEET URLS:

Kontron   www.kontron.com/products/come-compact/come-cwl6-e2s/come-cwl6-e2s_20190603_datasheet.pdf

MEN Micro   www.menmicro.com/products/rugged-com-express/15cb71/

MSC Technologies   www.msc-technologies.eu/products-solutions/products/boards/com-express-type-6/msc-c6b-cflr.html

Intel 9th Gen Processors Ride 
Type 6 COMe Board

MSC Technologies’ MSC-C6B-CFLR 
COM Express Type 6 modules are based 
on the newest 9th generation Intel Core 
processor. The Intel two-chip solution 
allows highest performance in graphics 
and computing on a COM Express 
module in basic form factor.

• Intel Core i7-9850HE, Celeron 
G4930E or E-2276ME

• Intel UHD Graphics and chipsets 
QM370 or CM246

• Up to 32GB DDR4-2666 SDRAM, dual 
channel

• 4x SATA 6Gb/s mass storage 
interfaces

• 3x DisplayPort/HDMI/DVI interfaces
• Triple independent display support
• Eight PCIe x1 lanes, configurable up 

to x4
• Intel Rapid Storage Technology 

support

MSC Technologies
www.msc-technologies.eu

Rugged COM Express Card 
Conforms to VITA 59

MEN Micro’s CB71C is an ultra-
rugged COM Express module for rail, 
public transportation and industry 
applications. It is 100% compatible 
with COM Express Type 6 pin-out and 
conforms to the VITA 59 standard, 
which specifies robust mechanics to 
ensure reliable operation even under 
the harshest environmental conditions.

• AMD Ryzen Embedded V1000/R1000 
series

• Up to 32GB DDR4 RAM with ECC
• Up to 4 Digital Display Interfaces 

(DP, eDP, HDMI, DVI)
• Hardware memory encryption
• Safety-relevant supervision functions
• Support up to -40°C to +85°C Tcase, 

conduction cooling
• VITA 59 in process, compliant with 

COM Express Basic, type 6
• PICMG COM.0 COM Express version 

also available

MEN Micro
www.menmicro.com

AMD Ryzen-Based COMe Cards 
Support Industrial Temps

The COMe-cVR6 (E2) from Kontron 
marries the COM Express compact form 
factor and AMD’s Ryzen Embedded 
V-Series processors. Through the use 
of consistent COM Express connectors 
and feature implementation, the 
COMe-cVR6 is easily exchangeable and 
offers the most flexibility for engineers 
designing it into their embedded 
devices based on individual carrier 
boards.

• AMD Ryzen Embedded V1000 APUs
• Up to 4 independent display support
• Up to 24GB DDR4 memory (8GB 

DDR4 soldered down)
• -40°C to +85°C operating temp., 

-40°C to +85°C non-operating 
temp.

• Support for Kontron’s Embedded 
Security Solution (Approtect)

Kontron
www.kontron.com

http://www.kontron.com/products/come-compact/come-cwl6-e2s/come-cwl6-e2s_20190603_datasheet.pdf
http://www.menmicro.com/products/rugged-com-express/15cb71/
http://www.msc-technologies.eu/products-solutions/products/boards/com-express-type-6/msc-c6b-cflr.html
http://www.msc-technologies.eu
http://www.menmicro.com
http://www.kontron.com
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By 
Colin O’Flynn

Embedded System Essentials

Building Against
Fault Injection Attacks
Cautious Coding

I n several articles now, I’ve brought up 
the idea of fault injection (FI) attacks, 
and how they could be used to bypass 
security. I previously demonstrated this 

as a method of dumping a private key from a 
USB key (Circuit Cellar 342, May 2019), as well 
as demonstrating how you could bypass fuse 
bytes (Circuit Cellar 338, September 2018), 
and how electromagnetic fault injection works 
(Circuit Cellar 352, November 2019).

I also gave an overview of several fault 
injection attacks in my January 2018 article 
(Circuit Cellar 330). All of those have been 
about the offense. So, in this article, I’m 
going to discuss the defense—how you can 
help improve your code against such attacks. 
Check out some of those old articles for more 
details on how we perform FI attacks as well. 
With all that in mind, let’s dig in!

WHAT ARE FAULT ATTACKS?
While I’ve covered fault attacks previously 

in more detail, it’s worth recapping what 
exactly these attacks can accomplish. A fault 
attack is one where an attacker modifies the 
flow of the program, normally in order to 
bypass security mechanisms. These bypasses 
can have devastating effects. We often rely 
on things like fuse bytes to protect our IP 
programmed into a microcontroller (MCU) for 
example, or we rely on a signature operation 

to ensure that only valid code is loaded onto 
the MCU.

Unfortunately, there isn’t much you can 
do when the MCU features themselves are 
vulnerable to a FI attack. If using the LPC1114 
from NXP Semiconductors that I demonstrated 
attacking in my May 2018 (Circuit Cellar 334) 
article (based on work by Chris Gerlinsky), you 
must try to rearchitect your system to work 
within the new security bounds. This would 
mean not storing any critical secrets with the 
flash, because you know it can be easily read 
by an attacker.

Luckily, not all devices have easily 
exploitable implementations. This means you 
are given a useful starting point, but it’s easy 
to quickly shoot yourself in the foot. As two 
examples, let’s first look at a simple output 
routine in Listing 1. This C-level code might 
not have an obvious exploitable defect, being 
just a simple loop, right? First let’s take a 
look at Listing 2, which is the assembly code 
generated by a recent Arm GCC compiler. 
If you want to explore the connection 
between C and ASM, be sure to check out  
godbolt.org which is an online compiler 
explorer as shown in Figure 1.

Now, the loop ending in Listing 2 has 
been converted to a “branch if not equal” or 
bne instruction. This minor fact has a very 
significant implication for our fault injection 
attack: Should an attacker “skip” a single 
comparison during the end value of the loop, 
the loop will now continue to iterate until the 
integer value wraps around! And this type of 
effect is exactly what an attacker can do in 
practice, meaning they can suddenly dump 
huge sections of code. If the loop was done 
with a “branch if less than” instruction, the 
attacker would need to skip that instruction 
on every iteration through the loop.

Fault injection are powerful attacks for bypassing security mechanisms. Rather 
than work on just showing the attacks, in this article Colin demonstrates how you 
can start to protect against them with some modest changes to your code flow.

void write_bytes(char * data[], unsigned int datalen) {
    for(int i = 0; i < datalen; i++){
        uart_write(data[i]);
    }
}

LISTING 1
A simple function for sending a buffer over a serial port
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This type of attack was demonstrated by Micah Scott 
for dumping an entire MCU firmware over USB. The link to 
a detailed video on this is posted on Circuit Cellar’s article 
materials webpage. Other people have used the attack in a 
similar fashion, causing a target device to simply “read out” 
memory. You can see how minor changes in program flow (in 
this case the compiler adding a “branch if not equal“) have big 
effects, so I wanted to take you through a few more obvious 
“poor design choices” that make you especially vulnerable to 
fault injection attacks.

FAULTY TOWERS
Now the previous example might be interesting, but it’s not 

the most common target. In fact, the most common target is 
typically a signature or password check function. If you take a 
look at most bootloaders on the market nowadays, what you’ll 
find is a piece of code that looks something like Listing 3. This 
type of logic is found in almost every embedded bootloader 
I’ve recently examined, so I won’t single any particular 
vendors out (but they know who they are!).

What is the problem with this? If you skip the signature 
check, suddenly you are booting the unvalidated image. 
While the attack does require some level of physical access to 
perform, the typical attack vector has someone performing 
this attack once to dump code memory. Once the attacker has 
the code memory, they may be able to find other vulnerabilities 
or even read out sensitive (secret) keys they can then use to 
perform a more advanced attack.

Rather than skipping the check, another pattern is some 
sort of “jump to infinite loop,” as shown in Listing 4. Again, it’s 
not always the case that the designer intended to generate this 
program flow, but that the compiler may have inserted it. This 
infinite loop is a poor practice, since an attacker doesn’t need 
to be particularly clever with their timing to jump out of the 
loop. In the example in Listing 4, we perform the same type 
of image validation as Listing 3. But in the program flow from 
Listing 4, a failed image means we go into an infinite loop that 
requires a system reset. But an attacker can instead send an 
incorrect image, and then perform a fault injection attack to 
skip one of the branch instructions making up the infinite loop.

Once the attacker breaks out of the loop, the code 
continues to execute as if a valid image was loaded. This 
type of code flow goes back to satellite TV smart-card days. 
(some of you may remember the idea of “unloopers.”) It’s 
particularly vulnerable because it doesn’t require the careful 
timing that the code flow from Listing 3 required.

LEANING TOWERS
While the previous fault vulnerabilities might seem obvious 

(at least in retrospect), it’s not always easy to prevent them 
from being attacked. Consider an attempt someone has made 
in Listing 5 to protect their comparison function by adding 
some time jitter. The idea here being that an attacker breaking 
Listing 3 would be sweeping though time to find the right location 
where the comparison happens. By adding significant time jitter 
in Listing 5, it means an attacker no longer has perfect timing. 
This doesn’t necessarily make the attack impossible, but it 
should make the attack much harder to replicate.

The problem is that if we again look at the assembly code 
in Listing 6, you can see the jump to the delay function could 

FIGURE 1
This is an example of comparing C to ASM using Godbolt.org, which will be a useful resource as you explore examples in this article.

write_bytes:
        push    {r4, r5, r6, lr}
        subs    r5, r1, #0
        beq     .L1
        sub     r4, r0, #4
        add     r5, r4, r5, lsl #2
.L3:
        ldr     r0, [r4, #4]!
        bl      uart_write
        cmp     r5, r4
        bne     .L3
.L1:
        pop     {r4, r5, r6, lr}
        bx      lr

LISTING 2
The resulting arm assembly code from Listing 1
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be skipped! This might require two faults in a row, which may 
be reasonably practical as just requires skipping multiple 
instructions compared to one.

Since you likely came to this article for guidance and not 
more examples of incorrect code, let’s move on to how we can 
do this correctly.

POWER TOWERS
First, we need to understand that adding fault tolerance is 

likely to add overhead in both code size and speed. But we can 
get away with some pretty minor adjustments. One example 
of more difficult-to-fault code is given in Listing 7. The major 
change is I’ve now introduced two variables. I first load the 
untrusted image into test_image, rather than directly into 

Additional materials from the author are available at:
www.circuitcellar.com/article-materials

void * boot_image;

load_image(boot_image);

if (verify_image(boot_image)) {
    jump_to_image(boot_image);
}

boot_backup_image();

LISTING 3
A simple bootloader that performs image verification on a received image

void * boot_image;

load_image(boot_image);

// verify_image() Returns -1 if
// verification fails
if (verify_image(boot_image) < 0) {
    //User must reset device to retry
    while(1);
}

jump_to_image(boot_image);

LISTING 4
Program flow using an infinite loop after a failed comparison

void * boot_image;
load_image(boot_image);
delay(random());

if (verify_image(boot_image)) {
    jump_to_image(boot_image);
}
while(1);

LISTING 5
Time jitter used to attempt and complicate FI attacks

main:
        push    {r4, lr}
        mov     r4, #0
        mov     r0, r4
        bl      load_image
        bl      random
        bl      delay
        mov     r0, r4
        bl      verify_image
        cmp     r0, r4
        bne     .L8
.L5:
        b       .L5
.L8:
        mov     r0, r4
        bl      jump_to_image
        b       .L5

LISTING 6
Assembly code from Listing 5 shows the delay itself can be skipped.

void * test_image;
void * boot_image = ERROR_HANDLER_ADDRESS;
unsigned int status = 0;

load_image(test_image);

delay(random());
status = verify_image(test_image, &boot_image)
//verify_image copies test_image to boot_image
if (status == 0xDEADF00D) {
    //Looks OK...
    delay(random());
    jump_to_image(boot_image);
} else if (status == 0xF4110911) {
    //Signature failed
    test_image = NULL;
    boot_image = NULL;
    while(1);
} else {
    //Unexpected result - fault attack??
    erase_sensitive_data();
    while(1);
}
boot_backup_image();

LISTING 7
Simple fault injection armored code from Listing 3

ABOUT THE AUTHOR
Colin O’Flynn (colin@oflynn.
com) has been building and 
breaking electronic devices 
for many years. He is an 
assistant professor at Dalhousie 
University, and also CTO of  
NewAE Technology both based in 
Halifax, NS, Canada. Some of his 
work is posted on his website at 
www.colinoflynn.com.

http://www.circuitcellar.com/article-materials
http://www.colinoflynn.com
mailto:colinoflynn.com
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the final image that we’ll boot. The other thing I do is push 
the actual assignment of boot_image into the comparison 
function itself, where we can do more complex operations.

Now the value of boot_image will only be set to the 
trusted value somewhere inside the verification function. In 
addition, I’ve made more complex return values that are less 
likely to be faulted. The function comparison is checked against 
a specific value, rather than just checked against being non-
zero. Should an attacker be corrupting memory instead of 
skipping instructions, they will find it more difficult to corrupt 
memory into the specific value I’m checking. With this, I can 
also detect unexpected operating conditions that could be 
an ongoing attack. Our ability to respond will depend on the 
device. Such failures could in fact be innocent mistakes—such 
as ESD discharge or corrupted memory—but we are now 
making conscious decisions to deal with the detection flag.

Now I’ve hidden the special verify_image() function 
away from you, so we also need to explore that a little before 
I can claim I’ve given you a complete look. This is shown in 
Listing 8. What makes this function more difficult to glitch? 
First off, you’ll notice comparisons are done multiple times. 
In this case there are several comparisons that check if the 
expected hash matches the calculated, and if that fails it will 
return a failure flag.

The other major change, is that there is no single comparison 
that carries the sensitive operation. You’ll notice that the 
critical variable in this case is the possible_ptr variable. If 
the hash comparison is successful, this variable will get copied 
to the boot_image variable. But several “unmasking” steps 
are needed for the valid value to get loaded, including toggling 
several bits that will otherwise cause this to point to some 
invalid memory area. In theory, the call in Listing 7 to jump_
to_image() with the expected image point will only occur if 

every comparison passes successfully in Listing 8.
Of course, this is all done from the C code level! Looking 

at assembly you can still identify some potential risky points. 
For example, what if the calls that are supposed to initialized 
expected_hash and hash never happen? Well, suddenly 
this means the entire comparison would pass! So additional 
guarding of the variables is needed to ensure you cannot 
simply skip that initial setup. But keeping fault attacks in 
mind is the most critical first step in designing truly secure 
embedded systems.

TOWER GUARD
How can you use this in practice then? I’ve already shown 

you that fault injection attacks are a serious threat to any 
embedded system. A careful review of your code should show 
you were attackers might find the most valuable targets, and 
you can concentrate on building fault injection resistant code 
around those points.

To help you out here, I’ve released an open-source library 
called ChipArmour (being Canadian I keep the “u” in Armour) 
that uses some of these best practices. You can either use 
the library as a reference for building fault-injection resistant 
code, or directly integrate it into your firmware project. This 
library is released under a permissive Apache license, so you 
can use this in both your own open-source and commercial 
projects.

My future columns will explore ChipArmour in more detail. 
This is still in an early beta, so you may not find a complete 
build available when you are reading this column. But I 
wanted to first bring you through the specifics of how fault 
injection attacks can be applied to a simple codebase, and 
how you can reduce the vulnerability of your existing code to 
fault injection attacks with some small modifications.  

unsigned int verify_image(void * image, void ** boot_ptr)
{
    //We’ll compare expected_hash to hash
    unsigned int expected_hash = get_known_hash();
    unsigned int hash = calculate_hash(image);

    //We also mask the value of the pointer we will jump to
    //Correctly executing code will remove these effects to
    //leave the original image pointer.
    void * possible_ptr = (void *)get_known_hash() ^ image;
    possible_ptr ^= (void *)(1 << 14);
    possible_ptr ^= (void *)(1<<15);
    
    //Perform multiple tests
    if (expected_hash != hash) return 0xF4110911;
    if (expected_hash == hash) possible_ptr ^= (void *)(1 << 14);
    delay(random());
    if (expected_hash == hash) possible_ptr ^= (void *)(1 << 15);
    if (expected_hash != hash) return 0xF4110911;
    delay(random());
    if (expected_hash == hash) possible_ptr ^= (void *)expected_hash;
    if (expected_hash != hash) return 0xF4110911;
    if (expected_hash == hash) *boot_ptr = possible_ptr
    if (expected_hash == hash) return 0xDEADF00D;
    return -1;    
}

LISTING 8
Details of the verification function, 
which requires correct execution to 
result in a useful result
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Picking Up Mixed Signals

Relaxation Generator: Reloaded

A bout 10 years ago, I published a Circuit 
Cellar article about a project I had 
designed that could generate relaxing 
sounds, such as ocean waves, brooks 

and rainfall. I ran this device at night for help falling 
asleep, and to mask out random outdoor noises 
that would wake up our dogs, whose barking would 
then wake us up. Incorporated in the project was 
a digital clock with an alarm feature that shut off 
those sounds.

The design for that project had to be more 
hardware-intensive 10 years back. At the time, I was 
using only Atmel 8-bit AVR microcontrollers (MCUs), 
and I had to choose a model that was close to top-
of-the-line to get the functionality I needed (Atmel 
is now part of Microchip Technology). I also needed 
five other support chips to complete the design. I re-
designed the project once—about 5 years ago—when 
I started using Arm MCUs. More recently, I decided to 
build a more modern version, with an Espressif ESP32 
MCU to provide Internet connectivity. In this article, I 
describe this newest version of my project.

REAL-TIME-CLOCK CHOICES
Because alarm clock functions were important to 

this project, I needed a real-time-clock (RTC) circuit 
of some sort to handle the time-keeping. Because 
power outages sometimes occur where I live, I 
wanted an RTC that would maintain the time through 
a power outage. In my first model, that function was 
handled by Maxim Integrated’s DS1307, and, in a later 
version, a Philips PCF8563. Both versions used a 3.3V 
coin cell as the battery backup. The design of the 
earlier models was such that powering the entire unit 
from a battery was not practical. Power supplies of 
10V, 5V and 3.3V would be needed. Therefore, when a 
power failure occurred, the “Wave” sound would stop. 
If you have used one of these relaxation devices, you 
know—as we found—that once the sound stops, you 
quickly wake up. For the earlier versions, this was a 
shortcoming. At least the clock never needed to be 
reset, because the RTC chip was backed up by the 
coin cell.

This time around, I decided that I wanted the 
entire unit to be capable of running from a battery 

Some years ago, Brian wrote an article for Circuit Cellar about his project that 
generates relaxing sounds—ocean waves, rainfall and such—and inculpating a digital 
clock to shut off the sounds. At the time, he built it with only Atmel 8-bit AVR MCUs 
and support chips. In this article, Brian describes his more modern version of the 
project, this time built with an Espressif ESP32 MCU to provide Internet connectivity.

Internet Era Upgrade

By 
Brian Millier
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for 12 or more hours. That eliminated the 
need for a discrete RTC chip, since the ESP32 
MCU can maintain the correct time completely 
in software—as long as it’s powered up. The 
newest version needs no manual setting 
of the clock, because the ESP32 connects 
to my home Wi-Fi router, and gets its time 
setting from an Internet-based Network Time 
Protocol (NTP) server.

The main reason I was able to power 
the whole project from a battery for an 
extended period partially stems from the 
choice of an extremely efficient digital audio 
amplifier module for this version. The earlier 
versions used a Class-B linear power amplifier 
(NXP  Semiconductors’ TDA1517), which 
produced excellent quality sound but needed 
a 10V power supply and drew a significant 
amount of current.

SOUND FILE DATA STORAGE
One aspect of the project that didn’t 

change over the 10 years was how the sound 
files were stored. I wanted to have several 
different sounds available. These sounds are 
played repetitively in a “loop,” but you want 
each of them to have some variety over time, 
so they should be at least a few minutes long. 
It turns out that the sounds of brooks and 
ocean waves involve a significant amount of 
high audio frequencies, so I settled on the 
16-bit/44kHz sampling rate (CD standard). 
Furthermore, I produce these sounds in 
stereo, with one speaker on a bedside table 
on each side of the bed. This gives a much 
more immersive sound.

It turns out that no low-cost, serial flash 
EEPROM devices are available that can handle 
the amount of data that these several files 
would contain. However, inexpensive SD cards 
are readily available. Even the lowest-capacity 
SD cards now available have much more 
storage capacity than is needed for even 25 
such sound files. I chose an LCD display that 
contained an SD card socket, eliminating the 
cost and wiring of a separate SD card socket.

Although I have built devices that 

reproduced the popular, highly compressed 
MP3 file format, I did not consider this format 
here. That’s because it would require either 
an external MP3 decoder chip such as the 
VS1033, or a significant amount of processing 
by the ESP32 MCU. The ESP32 is capable of 
MP3 decoding, and software libraries are 
available. However, I didn’t see any advantage 
in using a compressed sound file format, 
given the huge amount of storage available 
on even the smallest SD card. The ESP32 has 
other tasks to perform in the project, and 
there was always a chance it would not be 
able to handle everything in real time, with no 
glitches in the sound output.

I chose the standard Microsoft .WAV 
file format, because it is well documented 
and easy to handle in software. Another 
advantage is that you can find “relaxing” 
nature sound files readily on the Internet, and 
these files are generally in the .WAV format. 
The .WAV format contains one or more 
sections of metadata in various “headers,” 
prior to the large block of data containing 
the actual waveform data. Although these 
headers contain useful information—such as 
the song name, data rate and the number of 
bits resolution—I don’t try to parse out this 
information from the header sections (called 
“chunks”).

The project is designed for a sample rate 
of 44,100Hz, 16-bit stereo data, and that is 
the format that the .WAV file(s) must be in 
for proper operation. Therefore, all I must 
look for in the file is the word “data.” Once 
I find that, the next 4 bytes make up a 32-
bit number defining the length of the actual 
waveform data. I use this value to determine 
when I have reached the end of the waveform 
data. Immediately following the 4 file-length 
bytes are the actual data, and that is where I 
start reading the waveform data.

Figure 1 shows a hex dump of the 
beginning of an actual .WAV file that I use, with 
the “data” bytes circled in green. Although the 
bytes making up the string “data” are in the 
expected order, the following 4 bytes defining 

FIGURE 1
A hex dump of the beginning of 
a .WAV file. The start of the data 
“chunk” is marked by the ASCII string 
“data,” which I’ve circled in green.
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the file length, are in the big-Endian format, 
so you have to read them “backwards.” That 
is, the 0xA0423F08 value shown after “data” 
in Figure 1 equals 138,363,552 bytes. This file 
happened to be an hour long. In practice, one 
could use files that were only a few minutes 
long, as they are looped, and there is no 
“dead” (muted) time interval between the 
end of the file and when it starts back at the 
beginning.

THE CLOCK DISPLAY
One aspect of my earlier designs that 

wasn’t ideal was the clock display. Initially, I 
used a common 20×2-character LCD display 
with an LED backlight. It was easy to dim the 
LED backlight, so that it was not so bright as 
to disturb sleeping. However, as with all LCD 
character displays, the font was small and 
hard to read at any distance. I designed my 
own larger font using four adjacent character 
positions, so it was useable.

For the next version, I used an Adafruit 
4-digit LED display module. I chose it because 
it contains its own controller chip and is 
interfaced via I2C. The Arm MCU module that 
I was using (a Teensy 3.2) did not have a lot of 
spare GPIO pins, so the two-wire I2C interface 
was essential. The controller on this module 
can set 16 different LED brightness levels (by 
adjusting the LED current). However, I found 
that even the lowest brightness level seemed 
too bright for my liking at night. Even placing 
a colored filter in front of the LED module 
didn’t dim it enough.

For my latest version, I chose a common 
and inexpensive 2.8” color TFT display. An LCD 
display produces no actual light of its own, 
but merely filters/blocks the light emitted 
from its LED backlight. I control that backlight 

using a PWM (pulse width modulation) pin on 
the ESP32, so users have complete control 
over how dim they want the display to be. The 
software adjusts the backlight brightness, 
depending on whether it’s day or night. The 
controller library for this display contains the 
ability to use many different fonts/sizes, and I 
chose one that displays 0.5"-high characters, 
which are easily readable even when you’re 
half asleep!

One consideration that I initially 
overlooked, when choosing a graphic TFT LCD 
display, was the amount of time it would take 
to update the clock display. The TFT display is 
interfaced via SPI, and the ESP32 can handle 
high SPI data rates (40MHz). However, there 
is more to it than that. To simultaneously 
produce the relaxation sounds, the SD card 
(also an SPI device) must be accessed at a 
high enough rate to provide 176,400 data 
bytes per second. The SD card interface 
cannot handle the 40MHz SPI rate, however.

The waveform data must be transferred 
via the I2S bus to the two DACs that provide 
the 44.1KHz/16-bit stereo sound output. The 
DACs themselves have no internal buffers, 
so they must be fed data at a steady rate 
of 176,400 bytes/s, to produce “glitch-free” 
sound output. Therefore, the time it takes 
to update the TFT display must not interfere 
with the steady data flow needed for the 
sound output.

I found it interesting to note that on my 
10-year-old version of this project, I was able 
to accomplish this audio streaming with an 
8-bit ATMega644 MCU clocked at 20MHz, using 
a single interrupt service routine and some 
hand-coded assembly language. The 32  bit 
ESP32 MCU runs at 240MHz and contains 
two cores. Its I2S library routine uses DMA 
transfers. Even with all this MCU horsepower 
and DMA, it was tricky to accomplish the TFT 
clock display update, without introducing any 
glitches into the audio playback. More on this 
later in the “Software” section.

THE DACS: MAXIM MAX98357
In my original version of this project 10 

years ago, the Atmel ATmega644 MCU that 
I used was among the fastest 8-bit MCUs 
available. But it didn’t contain an I2S port. 
Neither did most general-purpose MCUs of the 
day. Therefore, I used a common MCP4822 
SPI 2-channel 12-bit DAC, and followed it with 
a TDA1517 linear stereo power amplifier chip.

This time around I used two MAX98357 
devices from Maxim Integrated. The 
MAX98357 contains an I2S 16-bit DAC and a 
Class D audio amplifier, capable of putting 
out 3.2W of power using only a 5V power 
source. I used two of these for stereo. This 
choice helped to reduce the overall power 

SD_Mode status External Resistor Selected Channel
HIGH 0Ωto VIN Left

Pull-up through RSMALL 470kΩ to VIN Right
Pull-up through RLARGE floating (Left + Right)/2

LOW 0Ωto GND Shut down

TABLE 1
The four different modes available on the Adafruit breakout board

GAIN_SLOT configuration Gain (dB)

Connected to GND via 100kΩ resistor 15

Connected directly to GND 12
Unconnected 9

Connected to VDD 6
Connected to VDD via 100kΩ resister 3

TABLE 2
GAIN_SLOT configurations on the Adafruit breakout board
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consumption to a level where four AA batteries 
could be used for backup power lasting for 
12 hours or more.

These devices come in either a very tiny 
WLP (wafer-level packaging) package or a tiny 
TQFN (thin quad flat no leads) package. There 
is no way I can personally solder such a small 
device to a PCB by hand. Adafruit comes to the 
rescue again, by selling a breakout module 
containing a MAX98357 device. The price 
of the Adafruit module is very reasonable 
considering it would cost about half that price 
for the MAX98357 IC, alone.

The MAX98357 requires three of the 
standard I2S signals: BCLK, LRCLK and DATA—
but does not require the higher frequency 
MCLK signal normally needed by many other 
audio codecs, DACs and other devices. This is 
important. Although the ESP32 can produce 
the high-frequency MCLK signal, it can only 
route that signal to GPIO0, which may not be 
available in some project designs.

If you feed the same three I2S signals to 
both MAX98357 chips, how does each device 
know if it is the left or the right channel? This 
is handled in a clever way on these devices. 
There is a single analog input pin (SD_MODE) 
that determines in which of four modes it 
will run. In the case of the Adafruit module, 
there is a 1MΩ pull-up resistor connected to 
the SD_MODE pin and the MAX98357, itself, 
has an internal 100kΩ pull-down resistor. The 
four different modes available on the Adafruit 
breakout board can be achieved as shown in 
Table 1.

The MAX98357 devices use BTL (bridge-
tied load) outputs—that is, the two output 
pins are differentially-driven, and neither one 
should be connected to ground. This rules out 
the use of headphones with the MAX98357, 
since headphones generally have Left, Right 
and Common wires. Driving two separate 
speakers is fine, though. The last feature of 
the MAX98357 is the adjustable Gain pin. If 
you assume that the I2S digital signal being 
fed into the MAX98357 is at full scale (0dBV), 
the output signal level is: Output Signal Level 
(dBV) = 2.1dB + selected Amplifier Gain (dB).

The Amplifier Gain is determined by the 
configuration of the Gain Slot pin, labeled 
Gain on the Adafruit breakout board (Table 2). 
Regardless of the digital input signal and 
amplifier gain, the maximum voltage that 
the MAX98357 can put out is limited by the 
5V suggested maximum VDD limit. Because of 
the BTL output configuration, the maximum 
signal output is 2 × 5V or 10VPP (minus small 
voltage drops from the internal MOSFET 
output drivers). According to the MAX98357 
specs, the maximum power output with a 
4Ω speaker is 3.2W, which corresponds to a 
peak-to-peak output signal level of 8.9V.

Using a full-scale I2S digital input and the 
maximum gain of 15dB, the output signal level 
would be 2.1 + 15 = 17.2dBV. This corresponds 
to 7.24VRMS or 20.5V peak-to-peak, which 
is more than double the maximum output 
voltage, so a lot of distortion would occur. 
Clearly, the 12dB and 15dB gains are meant 
to be used only when the I2S digital input 
signals are much less than the digital, full-
scale values.

DIGITAL VOLUME CONTROL
I needed to have a volume control in the 

unit. However, since the signal chain is digital 
all the way to the speakers, the only way to 
accomplish this is in the software. The 16-
bit digital waveform values coming from the 
SD card’s .WAV file must be divided by some 
constant, which is derived from the volume 
control’s setting. The 10kΩ volume control 
in the project is fed from a 2.5V reference 
IC through a 15kΩ resistor, which places 1V 
across it. The ESP32’s internal ADC has a 
voltage reference of 1.0V. Using the ADC to 
measure the pot position, the wiper’s voltage 
will span the entire ADC input range. I use 
the 8-bit ADC value to determine the constant 
mentioned above.

I must admit I didn’t look too closely at the 
calculations shown in the previous MAX98357 
DAC section, before I decided to go with the 
MAX98357 digital amplifier modules for this 
project. I had them on hand and had used 
them for an earlier project. In that project, I 
was pleasantly surprised that each MAX98357 

I2S Bus

PT8211
16-bit Audio DAC

Dual 10k Audio
taper pot

Adafruit ID 1552
TPA2012D2 Stereo
2.1W Class D Amplifier
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GND
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+
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−
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FIGURE 2
This block diagram shows what would have been a better audio output circuit than the one I had chosen.
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could drive an older hi-fi loudspeaker cabinet 
with a 12" woofer (and tweeter), adequately 
filling a 250ft2 room.

For this project, I was using only two small 
speaker enclosures with 5” woofers. More 
importantly, the sound levels needed would 
be much lower, since you are trying to sleep 
while the unit is operating.  Therefore, I wired 
the Gain_Slot pins for the minimum 3dB gain 
setting. At this low gain setting, the signal 
output level (with an F.S. digital input) would 
be 5.1dBV (1.8VRMS) or about 0.8W (double for 
two channels). It turned out that significantly 
less power per speaker was needed for 
comfortable audio levels.

The digital volume control is working 
with 16-bit integer waveforms. I reduce the 
default amplitude of the 16-bit waveform 
by multiplying it by some value in the range 
of 1 to 255, based upon the setting of the 
volume pot. Then I divide this value 256, by 
arithmetically shifting the number left eight 
times. For the amount of attenuation that I 
found was needed to produce a reasonable 
sound level at night, this works fine and 
doesn’t reduce the resolution of the audio 
waveform enough to be objectionable.

In hindsight, I realize that I could have 
made a better design choice for audio output. 
Given the small amount of audio power 
actually needed, I could have used a circuit like 
the one shown in Figure 2. That would have 
eliminated the need for software control of the 
volume, which would have eased some of the 
software timing constraints I had to handle. 
I have numerous PT8211 DACs on hand. I 
had to buy ten at about $1 each. However, 
they are not readily available through normal 
USA distributers. Also, the TP2012D2 Class D 
amplifier could have been replaced by two 
Texas Instruments (TI) LM386 linear power 
amplifier ICs. Even with a VCC of only 5V, they 
would have put out enough audio power, and 
not used a whole lot of current.

THE CIRCUIT DIAGRAM
Figure 3 is the overall circuit diagram. 

The ESP32 chip and supporting components/
antenna are mounted on what Espressif calls 
the ESP32 DevKitC module. Espressif first 
produced these, and still sells an updated 
version. Not all the DevKitC modules use 
the same pin layout as what I show in the 
diagram. My module has male pins mounted 

FIGURE 3
Schematic of the complete unit. Note that the PJRC color TFT display needs to have three resistors jumpered out, in order for the SD card socket to work reliably.
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on the bottom of the PC board, as shown in 
Figure 4.

For some reason, the newer Espressif 
DevKitC modules have female headers 
mounted on the top of the PC board. That 
would mean, for example, that I couldn’t swap 
in the newer model into my project because 
the pins would all be flipped 180 degrees. I 
don’t know how you are expected to use the 
Boot and EN buttons on these newer boards, 
because they would be covered up by the 
module when it was plugged in.

The ESP32 DevKitC is programmed 
via its micro USB port, using the built-in 
serial bootloader. I do my ESP32 software 
development using the Arduino IDE, loaded 
with the ESP32 boards package. With the 
Arduino IDE, downloading ESP32 program 
code to the DevKitC is simple: the “normal” 
ESP32 requirement of depressing the Boot 
button, while toggling the EN button on/off to 
download code is unnecessary. This is handled 
by the DTR and RTS handshake signals coming 
from the Silicon Labs’ 2102 USB/serial bridge 
device on-board the DevKitC module. The 
Arduino ESP32 downloading tool toggles the 
DTR/RTS lines properly, whereas other ESP32 
downloading applications may or may not do 
this.

One issue with some of the ESP32 DevKitC 
modules I have used concerns the power-up 
reset. During project development, I kept 
the DevKitC plugged into my PC’s USB port 
for power and for programming purposes. 
Connected this way, the 2102 USB/serial 
bridge will assert the DTR/RTS signals, so 
that the ESP32 will reset properly and start 
program execution as soon as the DevKitC 
board is enumerated by the PC as a valid USB 
com port device. However, the ESP32 would 
not execute a normal power-up reset when 
I tried to power the project using any of the 
following setups:

 
1)	 A USB power adapter plugged into the 

DevKitC USB socket
2)	 A battery pack consisting of three AA cells, 

feeding the VIN pin
3)	 A 3.7V LiPo battery feeding the VIN pin

The DevKitC module has a 3.3V LDO 
regulator on board to power the ESP32, so a 
battery supply to the Vin pin will work properly 
if the battery is greater than 3.3V (and ideally 
not much more than 6V). When using either 
of the two different battery sources, the 
ESP32’s VIN supply voltage should have risen 
to full value immediately, except for some 
delay charging the two 1,000µF capacitors 
(C2 and C3), which act as reservoirs for the 
two MAX98357 amplifier modules. In the case 
of the USB power adapter, the 5V would have 

risen somewhat slower than either of the 
batteries would have.

In all the aforementioned three cases, it 
appeared that the power to the ESP32 was 
not coming up to specs quickly enough for 
a proper ESP32 reset to occur. I temporarily 
removed the two 1,000µF capacitors, but that 
didn’t help. After consulting ESP32 forums, 
I ran across this issue in several posts. I 
eventually solved it by adding a 1µF capacitor 
(C4) to the ESP32’s EN (reset) line. Note that 
the VIN pin is actually labeled “5V” on the 
DevKitC, though it needn’t be a regulated 5V, 
as noted earlier.

SPI INTERFACE
I mentioned before that it was tricky to 

stream the audio data from the SD card to the 
I2S DACs, while also updating the TFT display 
without introducing audio glitches. Both the 
TFT display and the SD card interface use an 
SPI interface. The TFT display can handle SPI 
transfers at the 40MHz maximum SPI clock 
rate that the ESP32 can put out. Even at this 
high rate, I measured the display update time 
at 9.6ms, and that only involved updating the 
current time using five large-font characters.

Many fancy fonts are available with this 
library, but they require you to “erase” the 
screen area “under” the characters when 
refreshing the display, or you will just add 
the new character’s pixels on top of the old 
character, resulting in an unreadable display. 
Therefore, I chose the most primitive “block” 
font, since it did not need erasing and thus 
updated more quickly.

The SD card’s SPI interface can’t handle 
the 40MHz SPI rate. In fact, the Arduino 
SD card library runs at an SPI rate of only 
4MHz. Most of the current Arduino libraries 
for SPI peripherals use what is called a 

FIGURE 4
Photo of the ESP32 DevKitC. The module I used has its male pins on the bottom of the PCB. Newer versions 
by Espressif have female headers mounted on the top of the board.
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“transactional” approach. That is, any library 
functions that directly perform SPI transfers 
will set up the SPI port for the proper SPI mode 
and clock rate parameters (as configured for 
that peripheral), prior to sending each SPI 
message. Therefore, if there is more than one 
device sharing the SPI bus, the SPI port will 
be properly configured for each peripheral 
in advance as it is accessed. This was a big 
advance for Arduino SPI libraries, in such 
cases. But it does slow things down a bit.

For this project, I decided to use both 
SPI ports available on the ESP32—a third 
is dedicated to the DevKitC’s flash memory 
device. The TFT display is driven by the 

ESP32’s HSPI port and the SD card is driven by 
the VSPI port, which is the default SPI port used 
by most ESP32 libraries that use SPI. I didn’t 
delve deeply into either the SD card or the TFT 
display libraries enough to know if using both 
ports was any faster than using only one SPI 
port. But early in my coding, I was experiencing 
audio glitches until I got the code optimized, so 
it was worth doing it this way.

Both MAX98357 DACs use the I2S port. This 
is a synchronous serial protocol that requires 
4 bytes of audio data to be sent to the DAC 
at the chosen sample rate (44,100Hz). This 
data transfer must be a steady flow. There 
is no buffer inside the DAC to handle data, if 
it were to be sent in a burst mode. Luckily, 
Espressif has written a DMA-driven I2S library 
that handles this task. Since it is DMA-driven, 
it acts in the background, and other program 
code, such as fetching the next sector of data 
from the SD card, can operate concurrently.

TFT DISPLAY
The display I used is a 2.8” TFT touchscreen 

display with a resolution of 320 × 240 pixels. 
As just mentioned, it uses an SPI interface 
that can handle the high speeds put out by 
the ESP32’s HSPI port. I generally get these 
displays from PJRC.com, and they work very 
well. I recently got one of them from another 
source, and while it worked, it was too dim for 
normal use. I decided to use that one in this 
project, as I need a dim display for nighttime 
use anyway.

While this display includes a touchscreen, 
I didn’t use that feature. I know that the 
touchscreen and the associated XPT2046_
touchscreen Teensy library from PJRC work 
well. I find using touch on such a small display 
to be awkward, so I decided to use three 
switches and a rotary encoder for the user 
interface. This TFT display includes a standard-
sized SD card socket. I had seen posts on 
forums claiming that the SD card interface 
on this display didn’t work. It turns out that 
there are three resistors (R1,2,3) on the board 
that must be jumpered (shorted out). With that 
taken care of, the SD card interface worked 
fine, using the ESP32’s VSPI port.

To dim the display at night, I used a PWM 
output from the ESP32 to feed Q1, a PNP 
transistor. This provided a PWM-controlled 
current to the display’s LED backlight. The 
ESP32 contains a very sophisticated “LEDC” 
controller. It can generate up to 16 PWM 
signals on user-defined GPIO pins, completely 
in hardware. In my article “Exploring the 
ESP32’s Peripheral Blocks” in Circuit Cellar 
332 (March 2018), I discussed this peripheral 
in detail, along with a few other unique 
ESP32 peripherals. Today there are high-level 
library routines available to configure these 

FIGURE 5
Photo of the unit from the back in its cabinet. The four AA cells are not shown, because they are mounted 
on the back panel.

For detailed article references and additional resources go to:
www.circuitcellar.com/article-materials

RESOURCES

Adafruit | www.adafruit.com

Cadence Design Systems | www.cadence.com

Espressif Systems | www.espressif.com

Maxim Integrated | www.maximintegrated.com

Microchip Technology | www.microchip.com

NXP Semiconductors | www.nxp.com

PJRC | www.pjrc.com

Silicon Labs | www.silabs.com

Texas Instruments | www.ti.com

U‑blox | www.u‑blox.com
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peripherals, but when I wrote that article, 
they weren’t available, so I wrote my own 
routines.

POWER CHOICES
The project is normally powered by a USB 

power adapter capable of at least 500mA, 
which is plugged directly into the micro USB 
socket on the DevKitC. For battery backup, 
I decided to use three AA cells instead of a 
LiPo battery. Because power failures are 
infrequent, I assumed the battery backup 
would be used only sporadically. The shelf 
life of alkaline batteries approaches 10 years, 
so they wouldn’t have to be checked often. 
Three fresh AA cells will put out 4.8V. I placed 
a Schottky diode in series with the positive 
battery supply lead to prevent current from 
the 5V USB power module from entering the 
battery chain.

The project uses about 100mA when it is 
not playing any sound, and about 150mA when 
it is playing sound. This varies somewhat 
depending upon what level of dimming you 
apply to the TFT display. During the day, it 
contacts an NTP server once every hour to 
synchronize the time. This is a bit of overkill, 
and could be reduced to once per day without 
affecting anything. During synchronization, 
the current will increase, with short spikes 
of around 250mA for up to 15 seconds while 
the ESP32’s Wi-Fi circuitry is operating. The 
AA alkaline cells are rated around 2,400mA-
hours so they should last for 12 or more 
hours. Figure 5 is a rear-view photo of the 
project in its case. The AA cells are not visible, 
because they are mounted on the back cover.

The protoboard I used here is a specialty 
board meant to mount on top of a Raspberry 
Pi. I had previously mounted the two 
MAX98357 DAC/amplifier modules on this 
board for a Raspberry Pi project that I had 
decided not to pursue. The finished unit is 
shown in Figure 6.

SOFTWARE
When I switched to using the Arduino 

IDE from Bascom-AVR for my AVR projects, 
it was mainly because of the wealth of 
libraries available from thousands of Arduino 
enthusiasts. It turned out to be a wise 
choice, since this IDE has been expanded to 
handle many different Arm MCUs, of which 
I use Teensy 3.x and 4.0. It also handles 
the ESP8266/ESP32—which are not even 
Arm-based, but rather Tensilica Xtensa. 
(Tensilica is part of Cadence Design Systems.) 
Currently, I am using Visual Micro, an add-
on to Microsoft’s Visual Studio. This VM/VS 
combination acts as a “wrapper” around the 
Arduino C++ toolchain, and provides a much 
better programming environment.

For this project, several critical libraries were 
needed to handle the task, all of which would 
have been difficult to develop on one’s own:

1)	 The SD card library to read the sound data 
files from the SD card

2)	 The TFT graphic library for the display
3)	 The I2S DMA-driven library to feed the 

DACs
4)	 The NTP library to set/synchronize the 

ESP32’s software-driven RTC with network 
time

The Arduino SD card library was originally 
written for AVR MCUs, but when you add the 
ESP32 board package to the Arduino IDE, 
you get a custom SD card library written by 
Espressif. The TFT touchscreen display uses 
an ILI9341 controller chip. Adafruit originally 
wrote the Adafruit_ILI9341 library for 
the AVR family, and it has been customized 
more recently to handle Teensy, ESP8266/
ESP32 MCUs. It calls the Adafruit_GFX 
library for its graphics features. Important 
Note: My program uses the ESP32’s HSPI port 
for the TFT display’s SPI access, whereas the 
Adafruit ILI9341 library uses the VSPI port by 
default. This change is handled in my code as 
follows:

 SPIClass SPI2(HSPI);

And in setup()

SPI2.begin();
tft.begin(0, SPI2);

FIGURE 6
Shown here is the completed unit 
mounted in a small enclosure I made 
from walnut.
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The above code works fine with version 1.1.0 of the Adafruit_ILI9341 library, but it won’t compile with later 
versions, because they have changed something. You must use the Arduino “Sketch - > Include Library - > Manage 
Libraries” function to load this older version of the library, if that is not the one you are currently using. The I2S DMA-
driven library is written by Espressif. They use a certain style for their libraries, which differs from many other Arduino 
libraries. The Espressif libraries operate under the free RTOS operating system, and the I2S DMA-driven library needs the 
following included files:

#include “driver/i2s.h”
#include “freertos/queue.h”

The I2S port is configured by filling up the following two structures:

i2s_config_t i2s_config = {
  .mode = (i2s_mode_t)(I2S_MODE_MASTER | I2S_MODE_TX),
  .sample_rate = 44100,
  .bits_per_sample = (i2s_bits_per_sample_t) 16,  //I2S_BITS_PER_SAMPLE_16BIT
  .channel_format =   I2S_CHANNEL_FMT_RIGHT_LEFT,
  .communication_format = (i2s_comm_format_t) (I2S_COMM_FORMAT_I2S | I2S_COMM_FORMAT_I2S_MSB),
  .intr_alloc_flags = ESP_INTR_FLAG_LEVEL1, // high interrupt priority
  .dma_buf_count = 8,
  .dma_buf_len = 64,   //Interrupt level 1
  .use_apll = (int) 1
};

i2s_pin_config_t pin_config = {
  .bck_io_num = 26, //this is BCK pin
  .ws_io_num = 25, // this is LRCK pin
  .data_out_num = 27, // this is DATA output pin
  .data_in_num = -1   //Not used
};

The I2S port is started up as follows:

i2s_driver_install((i2s_port_t)i2s_num, &i2s_config, 0, NULL);
i2s_set_pin((i2s_port_t)i2s_num, &pin_config);

Since the I2S port is DMA-driven, when you want the sound to stop, it is not enough to just stop filling the DMA buffers. 
If that’s all you do, you’ll get a constant buzz coming from the speakers. You must add the following line to de-activate 
the DMA driver:

i2s_driver_uninstall((i2s_port_t)i2s_num);

As far as the NTP time synchronization is concerned, I had already done a few earlier ESP8266/ESP32 projects that 
needed NTP time synchronization. I didn’t use any library, instead adding all the code needed to do the initial UDP request 
and handle the NTP reply. I set the timeserver string variable to time.nist.gov URL and let the ESP32 resolve the IP# 
by using:

 WiFi.hostByName(timeServer, timeServerIP);

I thought I’d be clever this time and use a higher-level NTP library that I found on GitHub, which seemed simple to use. 
Basically, you just call this routine and pass it your wireless router’s SSID/Password, and it does everything necessary to 
synchronize the ESP32’s software RTC. During the many hours spent developing/programming this project, I found that 
this NTP library routine didn’t always work, and ultimately it failed to work at all.

Examining the library code, I saw that it used a fixed IP# for the NTP server. From past experience, I knew that the 
IP#s of these servers change from time to time, and the method described in the last paragraph was more reliable. So, I 
reverted to using my own, “non-library” code, and it has worked well so far. I will say that you do have to wait a bit after 
sending an NTP request for the response to come back (if it’s going to), and you also must allow for a number of retries if 
you want to be sure of getting a valid NTP synchronization.

The user interface is quite simple. The first time that the ESP32 is powered up after the project code has been loaded, 
it will check out the first two bytes of EEPROM for the “0x55, 0xAA” signature. Since the user hasn’t configured the project 
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yet, these two EEPROM bytes will instead be 
in the default erased state. The program will 
then call the configuration routine where it 
will ask for:

 
1)	 The desired Alarm time
2)	 The sound file # (from a list of sound file 

names on the display)
3)	 The local time offset from UTC. I don’t 

specifically handle Daylight Saving Time 
changeover in software, so you must 
change this offset twice a year on the 
day that the time changes.

These parameters will then be saved to 
EEPROM, where they will remain intact if the 
unit is powered down by removing both AC 
power and the battery.

The user interface consists of the 
following:

1)	 Three push buttons
2)	 Menu: To select the configuration menus 

listed above
3)	 Enter: to enter the value of the parameter 

being modified
4)	 Play: To start/stop the playing of the 

relaxation sound. Once started, this will 
continue to play until the alarm time is 
reached, or the user hits Play again.

5)	 A rotary encoder to adjust parameter 
values

6)	 A potentiometer to adjust volume

An SD card must be inserted into the SD 
card socket containing at least one sound 
file in the .WAV format. When using SD 
cards in an MCU-based project, it is always 
good practice to format the SD card using 
the “SDFormatter” PC application.

CONCLUSIONS
I’ve now built three versions of this 

device over 10+ years, all of which worked 
well. Since I use it every night, it is one 
of my projects that, in addition to being 
interesting to build/program, I also use 
repeatedly. That’s my justification for 
spending the additional time designing the 
newer models. I haven’t mentioned that one 
of my original goals in building this newest 
version was to incorporate a GPS module. 
This module would:

 
1)	 Provide an accurate time (in place of the 

external, Web-based NTP server)
2)	 Provide a “local” NTP server that could be 

used by several other IoT devices I’ve built 
for my home, all of which have an ongoing 
need for the correct time/date. Currently 
they use the same “external” Web-based 
NTP server that this project does.

I was stymied by this part of the project. 
An older GPS module that I had in my “spare” 
parts bin turned out to be dead. I ordered 
a GPS board from Amazon that contained 
the common U-blox Neo-6M module and a 
tiny antenna with 3” of coax cable. While 
I was able to see a lot of NMEA messages 
spewing out of it, it only rarely would get 
the proper “fix” on enough satellites to 
provide the time, never mind my location. 
I gave up trying out the unit in a window 
with a good “view” of the sky and took the 
whole thing outdoors. Even then it worked 
horribly. So, I returned it for a refund, and 
decided to abandon that part of the project. 
I had planned on placing this project a few 
feet from a large window, and I doubt that 
the inexpensive GPS modules that I was 
looking at would have worked properly.

This failed experiment makes me 
suspicious when I see TV shows where 
someone hides a “GPS” tracker underneath 
a car. What kind of great antenna must 
those trackers use?  
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L ast month we started our discussion 
of field effect transistors (FETs). 
Now, let’s expand on the topic. The 
FET was patented by Julius Edgar 

Lilienfeld in 1926, preceding the invention 
of the bipolar junction transistor (BJT) by 
some two decades. But the FET was never 
constructed, as the necessary technology 
wasn’t available at that time.

Let’s start with junction, or JFET structure, 
as depicted in Figure 1 with its accompanying 
schematic symbols. JFETs come in two 
flavors: N-channel and P-channel. The control 
electrode called gate is a P-N junction forming 
a diode which must be reverse-biased 
to achieve the FET’s signature high input 

impedance. The reverse-biased gate inhibits 
the movement of electrons or holes, based on 
whether the channel is of N or P respectively. 
At zero bias, as shown in Figure 2, the 
maximum drain-to-source current flows. And 
because the negative gate bias decreases the 
drain current, the JFETs are called depletion-
mode devices.

Analogous to BJTs, FET amplifiers can 
also be created in three basic configurations: 
Common source, common gate and common 
drain—the last also known as a source follower. 
Figure 2 plots the drain-to-source current ID 
versus drain-to-source voltage VDS with gate-
to-source voltage VGS as a parameter. At some 
negative VGS called pinch-off voltage VP the 
drain current will be zero. In the ohmic region 
the JFET acts as a voltage-controlled resistor:

R V
I gDS
DS

D m

= =
∆
∆

1

 	  (1)

where RDS is the channel resistance and gm is 
the FET’s transconductance gain.

JFETs’ dice are smaller than BJTs’. So, the 
common source JFETs are often used in the 
long-tailed pair configuration in front-end 
stages of monolithic op amps. This topology has 
very high input impedance and good voltage 
gain. Common gate topology can be seen as 
the second stage of a cascode amplifier, also 

The Consummate Engineer

Semiconductor Fundamentals 
(Part 5)

George continues his article series delving 
into the fundamentals of semiconductors. 
In Part 5, he expands his discussion 
of field effect transistors or FETs. He 
examines different types of JFETs and 
MOSFETs, looking at aspects including 
gate architecture and drain-source I-V 
characteristics.

By
George Novacek 

More on FETs

FIGURE 1
Structure of N-channel JFET and schematic symbols of N and P channel
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analogous to the BJT version with the same 
advantages and disadvantages. The source 
follower is frequently an integral part of high 
resistance sensors—such as the pyroelectric 
ones—because it matches their high input 
resistance to a low resistance output.

In saturation the IDSS current shows very 
little dependence on the drain-to-source 
voltage. This makes the design of constant 
current sinks and sources easy (Figure 3). 
Resistor R adjusts the magnitude of the sink 
current which, for R = 0 is the maximum 
saturation current IDSS. To set a lower current 
the resistor R value is increased. A P-channel 
JFET operated at opposite polarities forms a 
constant current source.

JFET APPLICATIONS
As shown in Figure 1, JFET is a symmetrical 

device, so the drain and source terminals are 
interchangeable. This property makes JFET 
useful as an analog switch or a voltage-
controlled resistor. Applications include 
volume control, voltage-controlled oscillators, 
modulators and wherever a variable 
resistance is needed. Because of their high 
input impedance and small geometry, FETs 
also find their use in low noise, high frequency 
circuits up to about 30GHz.

Figure 4 is a basic N-channel, common 
source JFET amplifier. When setting up its 
DC operating point you must remember to 
keep the gate electrode negatively biased 
with respect to source. Here the gate is 
connected to the ground potential VG = 0 and 
the source electrode’s potential is raised by 
drain current ID through resistor RS to VS, just 
as we used to bias triodes. With the working 
ID established from the JFET I-V diagram, 
you compute resistor values RS and RD to set 
VD to approximately (VDD - VS)/2. Of course, 
you need to know the JFET characteristics—
unfortunately, specification sheets I have 
checked give you very little data—just enough 
for designing an analog switch, but nothing 
more. You need to do some measurements of 
your own.

In the Figure 4 amplifier example I used 
J110 JFET with RG= 1MΩ, RS = 470Ω and RD = 
1kΩ. The DC operating point of this amplifier 
was VS = 2.3V, VD = 7.15V, VG = 0V and VDD = 
12V. To obtain a useful AC gain I bypassed RS 
with a 100µF capacitor, which resulted in the 
gain of 23dB (AV ≈14), - 3dB flat from 26Hz 
to 21MHz.

As mentioned earlier, JFETs come as 
N-channel and P-channel. The N-channel is 
doped with donor impurities and, therefore, 
the current through the channel is negative in 
the form of electrons. The P-channel is doped 
with acceptor impurities and, consequently, 
the current through the channel is positive 

in the form of holes. Because electrons have 
higher mobility than holes, N-channel JFETs 
exhibit greater channel conductivity (lower 
resistance) than their P-channel counterparts. 
The N-channel JFET is more efficient and, 
therefore, while available, P-channel JFETs 
are not as frequently used.

MOSFETS
The next step is to contemplate the 

metal-oxide semiconductor field effect 
transistor or MOSFET. Just like bipolar 
transistors and JFETs, MOSFETs come as N 
and P types. Additionally, each type can be 
an enhancement or depletion, so that makes 
our MOSFET types. Most digital ICs today—
including microprocessors, microcontrollers, 

FIGURE 2
JFET Drain I-V characteristics with VGS a parameter

FIGURE 3
N-channel JFET constant current sink

FIGURE 4
A common source low frequency amplifier
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storage devices and so on—are made using 
MOSFET technology. In the ‘70s, purely PMOS 
or NMOS ICs had been fabricated, but today 
complementary pairs of the N- and P-channel 
transistors let us build CMOS devices with 
high speed and low power consumption.

The main difference between the JFET 
and the MOSFET is that the MOSFET gate is 
isolated from the body of the semiconductor 
by an oxide insulator. Therefore, an extremely 
high input resistance to the tune of 1,012Ω is 
obtained. I used such a MOSFET to interface 
with an ionization chamber that had a cross-
current around 1-2nA. Because the gate 
could be easily destroyed by static electricity 
discharge, many MOSFETs have an internal 
diode protection, somewhat degrading the 
high input resistance.

Figure 5a illustrates the N-channel 
enhancement MOSFET structure, Figure 5b 
shows  the N-channel depletion mode structure. 
Notice that MOSFETs have a fourth electrode 
called body, bulk or substrate. It is generally 
connected to the source potential. Many 
MOSFETs have the connection done internally 
and no lead outside the enclosure. Also notice 
that the substrate-to-drain and substrate-to-
source junctions form intrinsic diodes. With 
the bulk usually connected to the substrate, 
the substrate-to-source diode is shorted. But 
the substrate-to-drain diode is the reason 
why the MOSFET drain and source are not 
interchangeable. The diodes are shown in the 
MOSFET symbols (Figure 6). The P-channel 
MOSFET’s structure looks the same, just 
the polarities are reversed. The N-channel 
enhancement MOSFET, in my experience, is 
the most prevalent for switching and digital 
applications.

By now MOSFETs have replaced BJTs in 
many applications, including communications 
reaching up to the many gigahertz. Dual 
gate MOSFETs were developed especially 
for applications as oscillators, mixers, 
multipliers, amplifiers and so forth in RF, VHF, 
UHF, microwave and higher frequency ranges. 
Both gates affect the operation of the device, 
which could be viewed as two MOSFETs in 
series. Their respective symbols are shown 
in Figure 7. Notice the intrinsic diode is not 
always shown in the MOSFET symbol.

A dual gate MOSFET can form a cascode 
amplifier overcoming the Miller effect as 
discussed previously. The Miller effect relates 
to the impedance between the output and the 
input, but at high frequencies capacitance is 
the predominant factor, potentially leading to 
instability. Biasing Gate 2 (also called the drain 
gate) at a constant potential, well bypassed to 
the ground, eliminates the capacitive coupling 
and thus the Miller effect.

The I-V characteristic of depletion MOSFETs 

ABOUT THE AUTHOR
George Novacek was a retired president of an 
aerospace company. He was a professional 
eng ineer  wi th  degrees  in  Automat ion 
and Cybernet ics.  George’s dissertat ion 
project was a design of a portable ECG 
(electrocardiograph) with wireless interface. 
George contributed articles to Circuit Cellar 
since 1999, penning more than 120 articles 
over the years. George passed away in 
January 2019, but we’re grateful to be able 
to share with you this, and a couple more 
articles he left with us to be published.

FIGURE 5
Cross-section of N-channel enhancement (a) and depletion (b) type MOSFET

FIGURE 6
Shown here are the symbols of enhancement (a) and depletion (b) type N-channel MOSFETs and enhancement 
(c) and depletion (d) type P-channel MOSFETs. No bulk terminals are present.

FIGURE 7
Here are the symbols of dual gate enhancement (a) and depletion (b) type N-channel MOSFETs and dual gate 
enhancement (c) and depletion (d) type P-channel MOSFETs.
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is similar to that of the JFETs in Figure 2. 
Enhancement MOSFETs need some minimum 
gate to source voltage to begin to conduct as 
seen in Figure 8. Design of an amplifier with 
enhanced mode MOSFETs is along the same 
lines as described earlier for JFETs. Just the 
gate biasing is different. MOSFETs intended 
for logic switching applications guarantee 
minimum RDS—in other words, the drain-to-
source resistance, often in milliohms, at the 
gate voltages less than 5V.

BUILDING BLOCKS
Some readers may think discussing 

discrete components unnecessary. Thanks to 
the availability of many inexpensive integrated 
circuits (ICs) and system building blocks, 
circuit design with discrete components 
is becoming almost an arcane art. But, all 
that said, transistors are the building blocks 
of ICs—devices that many make a living 
designing. And even if IC design is not in 
your future, understanding their underlying 
principles can only help with product designs 
and troubleshooting.

We’ll complete the series next month with 
a look at power MOSFETs and some nearly 
exotic components with multiple P-N 
junctions.  

For detailed article references and additional resources 
go to: www.circuitcellar.com/article-materials

FIGURE 8
Drain–source I-V characteristics of an enhancement type N-channel MOSFET
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From the Bench

Shedding Light on 
Smart LED Design (Part 1) 

I t’s hard to imagine how the Earth could 
be illuminated by just the stars and the 
planetary bodies in the night sky. This is 
like a concert hall or arena being lit just 

by cigarette lighters (for you older readers) 
or cell phones (for you younger readers). 
Two thousand years ago, our ancestors had 
no concept of the universe or what was 
producing the points of light seen in night 
sky. If the moon happened to appear, the 
amount of light cast upon the Earth increased 
dramatically, depending on its phase. 
Unaware that this was reflected light from the 
sun, our ancestors knew its light far exceeded 
that of the stars and gave the moon its magic 
quality. Even with a full moon, this low level of 
light causes a problem for our eyes.

Our eye’s retina is made up of rod and 
cone cells. Rod cells are sensitive to low light 
levels in the green/blue area of the spectrum. 
These cells are unable to differentiate colors, 
so objects seen in low light appear to be black 
or white (shades of gray). The sun brings forth 
a blinding light (compared to the night). It was 
easy to be in awe of this mighty illumination 
that divides the day from the night. No wonder 
our ancestors thought of these as gods, lording 
over the heavens.

With sufficient light from the sun, three 
types of cone cells in the retina take over. 
Each type of cone cell responds to a specific 
light frequency range. The combination of the 
light levels received by each of these cone 
cells determines the color of the light being 
received in that area. So, the colors we see 
are, in fact, made up of the combination of 
only three cell outputs—just like the pixels of 
an HDTV create the illusion of any color using 
only three different colored LEDs (red, green 
and blue or RGB). This month we’ll look at the 
smart LED, made using RGB LEDs.

LEDS
Electroluminescence, a material’s ability 

to emit light in response to the presence of 
an electric current, was observe in the early 
20th century. Practical LEDs weren’t available 
until the 1960s, and even then, only red LEDs 
were available. The color produced by an LED 
is based on the materials used, and it would 
be another 10 years before other colors were 
produced with adequate output. The band 
gap requirements—energy required to cross 
a junction—of each material is different, so 
we have different voltage requirements for 
each type of LED (Figure 1) [1].

Creating a smart LED design is both challenging and fun. In this 
article, Jeff first looks at the history and technology of LEDs, and 
then shares the details of his smart LED project based on RGB LEDs. 
He introduces a circuit that programs a string of NeoPixel LED strips 
to specific colors, and is controlled by push buttons.

By 
Jeff Bachiochi

Programming and Pixels

Typical LED Characteristics

Semiconductor
material

GaAs

GaAsP

GaAsP

GaAsP:N

AlGaP

SiC

GalnN

Wavelength

850-940nm

630-660nm

605-620nm

585-595nm

550-570nm

430-505nm

450nm

Color

Infra-Red

Red

Amber

Yellow

Green

Blue

White

VF @ 20mA

1.2V

1.8V

2.0V

2.2V

3.5V

3.6V

4.0V

FIGURE 1
Listed here are some semiconductor materials used to produce an LED’s P-N junction, along with the 
wavelengths (colors) emitted and the typical band-gap voltages required [1].
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Today, we have tri-color LEDs available in 
both through-hole and surface-mount (SMT) 
configurations (Figure 2). If you look closely at 
the SMT device in Figure 2, you may suspect 
there are more than three discrete LEDs in 
this SMT package. While discrete LEDs are 
available in SMT, this picture is of a NeoPixel 
from Adafruit, the smart LED I’ll be using for 
this project. The NeoPixel is the combination of 
an addressable IC (WS2811 or similar) and RGB 
LEDs. This IC handles the intensity of each of the 
three LEDs, based on three 8-bit values shifted 
into the device. It has just four connections—
power, ground, and serial in and out. Let’s take 
a closer look on how to work with it.

Anyone who has worked with graphics of 
any kind is probably familiar with the 24-bit 
digital signature used for describing pixel color. 
The 24-bits are actually three 8-bit bytes, with 
one byte for each of the RGB colors. This means 
that you have 8 bits of control over the intensity 
of each of the three colors, where 0 is fully OFF 
and 255 is fully ON. This 24-bit value is sent in 
an RGB sequence, MSB first. Since there is no 
external clock necessary, the WS8211 requires 
the serial data to conform to a special format 
for each bit.

For a bit=0 the TON time must be between 
150-450ns, and the TOFF time between 750ns 
and 1,050ns. For a bit=1 the TON time must be 
between 450-750ns and the TOFF time between 
450-750ns. The total time for a cycle (TON + 
TOFF) is between 650ns and 1,650ns. A pause 
in excess of 50µs ends a sequence. Refer to 
Figure 3 for this, and note that the NeoPixel is 
designed to allow multiple devices to be daisy-
chained SIN to SOUT.

You must send out 24-bits for each NeoPixel 
connected in series. Note that data flow through 
each device is 1 bit out for each bit in. So, the 
first 24 bits you send out will end up in the last 
device in the chain. When a pause in serial data 
occurs (greater than 50µs), all devices latch onto 
the bits in its shift register. This latched data 
will be used to set three PWM outputs to drive 
the LEDs. Note here that there is a 500ns delay 
between a bit in and a bit out of each device. 
The latching of each device’s data is therefore 
not synchronized. This will be perceptible only 
for very long strings of LEDs, because these 
delays add up.

Undoubtedly, you have noticed that the 
timing is fairly fast. This is good, because it 
allows you to update an entire string of LEDs 
quickly. But, it’s also bad, because this shifting 
will most likely require blocking other execution 
while active. If a bit time is about 1µs, then it 
will take 24µs for each NeoPixel and 2.4ms for 
a string of 100. That’s a long time to block any 
other routine.

Now that I’ve stated the facts as in the 
WS2811 sheet, let the truth be told. If you plan 

to work with NeoPixels, you’ll want to read Josh 
Levine’s WordPress blog [2] on the subject of 
bit timing. It seems that as long as you use the 
proper ON times, OFF timing can be much more 
relaxed, and this greatly improves the ability 
of your code to work with other interrupting 
sources.

CODING
I decided to give these constraints a test try 

by coding only the ON times in an interrupt. The 
extra code in the interrupt assures a minimum 
OFF time, and additional interruptions in 
between bits can extend this OFF time. As long 
as this doesn’t exceed the reset time, 50µs, we 
should be good. This month’s project uses a 
PIC16F1847 from Microchip Technology, which 
is an 18-pin flash microcontroller (MCU), and 
this circuit will be part of a larger project. This 
circuit consists of eight (switch) inputs along, 
with one output for driving a string of nine 
NeoPixels and a few miscellaneous I/Os for 
communications. The schematics are shown in 
Figure 4 and Figure 5.

This MCU will run at 32MHz with its internal 
oscillator, giving an execution speed of 8MHz or 
125ns. Each bit or ON time is coded as a “bsf” 
(bit set instruction), some delay and a “bcf” (bit 
clear instruction). The delay is different for a “0” 
and a “1” bit, and consists of NOPs (no operation 
instruction). Note the timing in each of the two 
Timer1 routines in the NeoPixel interrupt.

FIGURE 2
Today we can purchase RGB LEDs in 
both through-hole and SMT packages.

FIGURE 3
On the left are the timing specs for communicating with the WS2811. The ON time determines the bit’s value. 
Data must be sent continuously, until the last daisy-chained device receives the first 24 bits sent. An extended 
OFF time latches the present data into all devices. 
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FIGURE 5
Schematic of the PIC16F1847 MCU and 
communication, programming and 
debugging connectors. All parts are 
SMT parts except the switches and pin 
headers.

FIGURE 4
This schematic shows the 
eight input switches and 
nine serial NeoPixels for 
this month’s project PCB. 
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These adhere to the max and min ON times 
for NeoPixel bit. While Timer 1 had a 30ns 
resolution, it was easier to code two fixed 
timing routines than to load the timer and let 
the timer count a more exact timing. This would 
end up being a totally blocking interrupt, if not 
for the relaxed OFF timing. So, I’m just using 
the TIMER1 interrupt without actually using its 
timing ability! The remaining code must fetch 
a byte of data to send, strip off the data bit in 
question (MSB to LSB), and set/delay/clear the 
output bit, before leaving the routine. A check 
after each bit is sent disables the TIMER1 
interrupt once all bits have been transmitted.

The NeoPixel data—3 bytes for each of the 
nine NeoPixel LEDs—are stored in the proper 
sequence as required by the NeoPixel data 
format. This makes fetching each byte easy, 
using an indirect register move. Picking off the 
appropriate bit of each byte is done by rotating 
the byte through the carry. The ON time code is 
based on the carry, as shown in Listing 1.

A BIT (24 BITS) ABOUT COLOR
The website rgbcolorcode.com [3] offers 

a graphic example of how RGB values change 
as they are mixed to produce a required color. 
You’ll note that a color’s code is different, 
depending on whether you are adding light—as 
in this project (RGB)—or applying pigments, 
as with printing (CMYK). RGB is an additive 
process, from no color (black) to all colors 
(white), whereas CMYK is a subtractive process 
from white (reflecting all colors) to black (no 
light reflection).

It’s easy to understand how we can produce 
black, white, red, green and blue with LEDs. 
Just turn them all ON or, either individually or 
collectively. If they are turned ON in pairs, we can 
also get cyan, yellow and magenta. Any other 
colors require percentages of something other 
than zero or 100%. Luckily, the WS2811 LED 
driver, discussed previously, uses PWM outputs. 
The PWM values are 8-bit and correspond to 
color chart values. This allows each LED to be 
adjusted to some percentage of full.

PWM values other than 0 or 255 are required 
for intermediate colors, such as orange or 
brown. Having PWM control also allows any color 
to be faded to black, by lowering the values of 
the RGB LEDs to zero while retaining the same 
color proportions. NeoPixels want to receive the 
color values for each LED in a red, green, blue 
sequence, so the table’s 27 consecutive memory 
locations are defined as R, G and B for each of 
the LEDs 1-8.

SWITCH INPUTS
For now, I’ll be using each of the eight 

switches to set the nine LEDs to a different color. 
This will test out both the switches and the 
NeoPixels. So, let’s look at those switches. The 

MCU requires certain functions to be on specific 
pins, so it’s not unusual that the leftover pins, 
used as switch inputs, are not on the same port. 
The first order of business is to gather the state 
of each input into a single byte, where switches 
1-8 correspond to bits 0-7 of the register, 
NewSwitch. A second register, LastSwitch, will 
retain the previous sample’s switch states 
(originally initialized to 0xFF).

A byte of 0xFF means that all switches 
are “not pushed.” When a switch is pushed, 
it pulls its input to ground, and samples as 
a “0.” By comparing these two registers 
(XORed), we can determine if any switch has 
changed state. By comparing this value with 
NewSwitch (ANDed) we can eliminate the 
push changes, keeping only those changes 
due to releasing a switch. The complement of 
this will be indicated with a “0” any key that 
has been released since the last sample. This 
is combined (ANDed) with COSSwitch, which 

LISTING 1
TIMER1 interrupt routine handles the timing of each bit to the NeoPixels. The ON time is controlled by hard 
coding NOPs for each one-instruction cycle delay. An instruction cycle is 32MHz /4 = 125ns.

  btfss          STATUS, C       ; skip next if carry=1
  goto     TIMER1_0       
;
TIMER1_1  
    bsf      LATB,   Sout
    nop                           ; 125ns
    nop                           ; 250ns
    nop                           ; 370ns
    nop                           ; 500ns
    bcf     LATB,   Sout          ; 625ns
    goto     TIMER1_Continue
;    
TIMER1_0
    bsf     LATB,   Sout
    nop                           ; 125ns
    nop                           ; 250ns
    bcf     LATB,   Sout          ; 375ns
    goto    TIMER1_Continue
;    
TIMER1_Continue

ABOUT THE AUTHOR
Jeff Bachiochi (pronounced BAH-key-AH-key) 
has been writing for Circuit Cellar since 1988. 
His background includes product design and 
manufacturing. You can reach him at:
jeff.bachiochi@imaginethatnow.com or at:
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keeps a running tally of any changes.
While we have both I’s and O’s to deal 

with, no actual work will be done here, other 
than sampling the status of the switches and 
setting the color of each LED, based on the color 
table. What to do with the switch status and 
what colors to set each LED will be handled 
by a second circuit. So, we’ll need to set up a 
communications interface.

The SPI port will be used as a slave device 
for communication with another circuit. The 
UART will serve as a debug port for messages. 
The UART could be connected to an LCD or a 
PC to display messages about the status of this 
device. Which switch was just released? What 
SPI data are being received from a master? What 
is the bitstream going to the NeoPixels? While 
none of this is necessary for the operation, my 
coding mistakes are easier to find when I have 
good feedback about what’s actually happening 
inside this black box.

I’ve started this project with the I/O slave 

device, and have not yet produced a master 
device. So how can I test this part of the project? 
I can use the trusty Arduino as a master device, 
and write a simple program to collect switch 
information and set the color table through 
the Arduino’s SPI port. This project will use 
multiple slave devices, so I’m going to make 
use of the slave select (SS) line to choose which 
slave device I want to communicate with. I 
could have chosen to use I2C for inter-board 
communication, in which case each device 
would require a separate address. While SPI 
requires more than the two signal lines of I2C, 
each slave device has its own slave select input, 
so the code can stay identical for each without 
having to assign a different address to each 
slave device.

TESTING 1, 2, 3, 4...
The master provides a clock for the SPI shift 

register in each device. SPI communication 
transfers a byte in both directions at the same 

LISTING 2
Code listing showing the SPI transfers

int writeSwitchStatusCommand() 
{
  // take the chip select low to select the device:
  digitalWrite(chipSelectPin, LOW);
  // send the device the 6-bit address register you want to write to, receive switch status
  int result = SPI.transfer(0x00);
  // send the value you wish to write to the addressed register, receive dummy
  SPI.transfer(~result);
  // take the chip select high to de-select:
  digitalWrite(chipSelectPin, HIGH);
  // return the result:
  Serial.println(“Received “ + String(result,HEX));
  return (result);
}

void writeLEDColorTableCommand() 
{
  // take the chip select low to select the device:
  digitalWrite(chipSelectPin, LOW);
  // send the device the 6-bit address register you want to write to, receive switch status
  SPI.transfer(0x01);
  for(int i=0; i<9; i++)
  {
    Serial.print(“LED” + string(i+1)); 
    for(int j=0; j<3; j++)
    {
      // send the value you wish to write to the addressed register, receive dummy
      SPI.transfer(FaceArray[(i*3)+j]);
      Serial.print(“,”); 
      Serial.print(FaceArray[(i*3)+j],HEX);      
      
    }
    Serial.println();
  }
  // take the chip select high to de-select:
  digitalWrite(chipSelectPin, HIGH);
}
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time. How the data are used is entirely up to you. 
I found a resource from ST Microelectronics that 
explained a simple protocol they use for some 
of their products [4]. The first two MSBits (most 
significant bits) indicate one of four modes of 
operation: Read, Write, Read and Clear Status, 
and Read Device Information. The last 6 bits 
indicate a register number. With this protocol, I 
could individually change any of the 27 registers 
used in the LED1:8 color table. At this point, I 
think I only need to write data, but it won’t hurt 
to follow this suggested protocol.

Because data moves in both directions at 
the same time, you can see that a slave can’t 
possibly know what to send before a request is 
made (the slave receives a command), so there 
will be times when “dummy” data is sent just to 
fill the gap. After sending a “read” command, 
the master must send a dummy byte to allow 
the slave to respond with the data and clock it 

back to the master.
There is only the time between clock cycles 

to determine which register is requested and 
transfer it into the SSP1BUF register, before the 
master’s clock begins shifting data out. This is 
not an issue when a slave device like an EEPROM 
has the hardware to handle it. But when the 
slave is a software device, there is code to 
execute. These data might be unobtainable in 
the required time frame, because the master 
doesn’t idle between bytes. You may need to 
expand your protocol by 1 byte to allow for 
this. The master might need to send 3 bytes: 
request, dummy, dummy. The slave would send 
dummy (while waiting for the request), dummy 
(while it processes the request) and then the 
data.

In this case I can make use of the first 
exchange by always loading the switch status 
into the SPI buffer before the beginning of 

LISTING 3
As shown here, each bit position 0-7 (switches 1-8) has been assigned a color: black, red, orange, yellow, green, blue, violet and white.

//************************************** 
// request switch status 
//  if a switch bit = 0, then fill
//  the array with the appropriate color
// pause 
//**************************************

void loop() 
{
  switches = writeSwitchStatusCommand();
  if (!(switches & 1))
  {
    if(debug&1)
    {
      Serial.println(“Switch 1”);
    }
    Fill(Black); 
  }
  if (!(switches & 2))
  {
    if(debug&1)
    {
      Serial.println(“Switch 2”);
    }
    Fill(Red);  
  }
  if (!(switches & 4))
  {
    if(debug&1)
    {
      Serial.println(“Switch 3”);
    }
    Fill(Orange); 
  }
  if (!(switches & 8))
  {
    if(debug&1)
    {				         (continues)

(Listing3 continued)
     Serial.println(“Switch 4”); 
    }
    Fill(Yellow);  
  }
  if (!(switches & 16))
  {
    if(debug&1)
    {
      Serial.println(“Switch 5”);
    }
    Fill(Green);  
  }
  if (!(switches & 32))
  {
    if(debug&1)
    {
      Serial.println(“Switch 6”);
    }
    Fill(Blue);  
  }
  if (!(switches & 64))
  {
    if(debug&1)
    {
      Serial.println(“Switch 7”);
    }
    Fill(Violet);  
  }
  if (!(switches & 128))
  {
    if(debug&1)
    {
      Serial.println(“Switch 8”);
    }
    Fill(White);  
  }
  delay(100);
}
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then be used to update the NeoPixels. Listing 2 
shows the code to handle these two transfers.

Our circuit samples the switches while its 
idle. Any button pushed and released is added to 
the switch status register COSSwitch as a zero 
in the appropriate bit position (switch 1-8 = bits 
0-7). The Arduino’s loop function begins with a 
request of the switch status. It receives this by 
using the command 0x00 (write to address 0). 
Each bit position 0-7 (switches 1-8) has been 
assigned a color: black, red, orange, yellow, 
green, blue, violet and white. When a zero is 
found in a bit position, the fill routine is called 
with the bit’s associated color palette. Then the 
function ends with a short delay before looping 
back (Listing 3).

The Fill(long grb) function breaks the 
32-bit value into 4 bytes (Listing 4). The MSByte 
(most significant byte) isn’t used, but the second 
byte becomes the red color value, the third the 
green and fourth the blue palette values for that 
particular color. An array that holds the 3 color 
bytes for each of the nine LEDs is filled with that 
color. There isn’t any reason each LED couldn’t 
have a different color.

This array is used by the 
writeLEDColorTableCommand() function to 
update our PCB via SPI, with data for its LED 
Color Table. When our board receives these 
27 bytes, it stores them in the LED Color 
Table and produces NeoPixel serial data to 
update the nine LEDs with new color data.

It took longer to wire up a 6-pin connector to 
the Arduino than it did to write this simple test 
program. That’s what I like about the Arduino—
it makes a great testing vehicle. Each switch 
will, in turn, change all the NeoPixels to their 
particular colors (Figure 6).

THE BIGGER PICTURE?
This column introduced a circuit that will 

program a string of nine NeoPixels to specific 
colors, based on receiving SPI data from some 
master SPI device. In addition, the circuit has 
eight push buttons that are constantly scanned 
for user presses. Switch status is reported to 
the master SPI device when it is requested. 
In our test case, the master merely sent data 
to change all LEDs to a particular color, based 
on the switch status. Remember—this is just 
a small part of a larger conglomeration, which 
will replace an inexpensive and simple, yet 
perplexing, curio with a pricey technology-
ridden one.

I’ve designed using the SK6812 or WS6812 in 
its IC form, however these are also available pre-
mounted on flex circuit and sold by the meter 
(Figure 6). I don’t want to give too much away 
here, so I’ll leave you with something to think 
about. Put on your Sherlock Holmes “deerstalker,” 
and see if you can figure it out before next 
month. Too much to learn, so little time. 

any communications—normally a wasted dummy byte from the slave. If we can 
receive switch status on every transfer, we only need to be able to write data 
to the slave. A command of “0” would be a write to address “0” (switch status 
register). One additional byte includes the data to write to the slave. This byte will 
be the complement of the switch status it just received, and will then be IORed 
with COSSwitch (switch status register) to reset (and acknowledge) the status. A 
command of “1” would be a write to address “1” (LED color table start). This would 
be followed by (27) bytes to fill the LED Color Table, and that table’s data would 

Additional materials from the author are available at:
www.circuitcellar.com/article-materials
References [1] through [4] as marked in the article can be found there.

RESOURCES

Adafruit | www.adafruit.com

Microchip Technology | www.microchip.com

ST Microelectronics | www.st.com

FIGURE 6
Prototype of this month’s circuit in operation

LISTING 4
The Fill(long grb) function breaks the 32-bit value into 4 bytes.

//************************************** 
// fill array of bytes with color grb
// then send array using SPI 
//**************************************
void Fill(long grb)
{
  for (int i=0; i<9; i++)
  {
    //Serial.println(grb,HEX);
    int x = grb/0x10000;
    FaceArray[i*3] = x;
    //Serial.println(x,HEX);    
    int y = (grb - (x * 0x10000)) / 0x100;
    FaceArray[(i*3)+1] = y;
    //Serial.println(y,HEX);
    int z = grb - (x * 0x10000) - (y * 0x100);
    FaceArray[(i*3)+2] = z;
    //Serial.println(z,HEX);
  }
  writeLEDColorTableCommand();  
}

http://www.circuitcellar.com/article-materials
http://www.adafruit.com
http://www.microchip.com
http://www.st.com
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Embedded Toolchain for Arm Provides Integration with AWS
IAR Systems has launched a new edition of IAR Embedded Workbench for Arm that provides integration with Amazon Web 

Services (AWS). IAR Embedded Workbench for Arm, AWS edition, provides developers with the possibility to log in to an AWS 
account from within the C/C++ development toolchain IDE. During debugging, they are 
able to access the TCP/IP interface, see the status of MQTT packages and inspect the 
device shadow for complete control from device to cloud. The cloud communication with 
AWS IoT Core can also be inspected and controlled by subscribing to AWS topics and 
publishing commands, says IAR Systems.

The toolchain also provides support for the IoT Realtime Operating System, Amazon 
FreeRTOS. Based on the FreeRTOS kernel, Amazon FreeRTOS includes software libraries 
which make it easy to securely connect devices locally to AWS Greengrass, or directly 
to the cloud, and update them remotely. For new devices, developers can choose to 
build their embedded and IoT application on a variety of qualified microcontrollers from 
companies collaborating with AWS and IAR Systems, including NXP, STMicroelectronics 
and Texas Instruments.

IAR Systems | www.iar.com

2,000W Modular Power Supplies Offer Full MoPP Isolation
TDK has announced its TDK-Lambda brand QM8B modular power supplies rated at up 

to 2,000W. This further extends the QM series which can provide 550W to 2,000W output 
power. The QM8B models are available with up to 18 outputs, have full MoPP (Means of 
Patient Protection) isolation and low acoustic noise. With medical and industrial safety 
certifications, the power supplies are suitable for use in medical, test and measurement, 
communications and broadcast equipment. This avoids the need for multiple power 
supplies in systems requiring a large number of independent voltages.

Accepting a wide range 90 to 264Vac, 47-63Hz input (440Hz with reduced PFC), the 
QM8B can deliver 1200W at low line and 2000W with a high line 180-264 Vac input. With its 
modular construction, the series can be configured using a simple on-line configurator to provide 1 to 18 independently regulated 
outputs and include individual output good signal and remote on/off functions. The QM series module output voltages range from 
2.8V to 105.6V and have output power levels from 300W to 1200W. Overall case dimensions for the QM8B are 200mm × 63.3mm 
× 268 mm (W x H x D). The QM8B will operate in ambient temperatures of -20 to +70°C (-40°C start-up), with output power and 
output current linearly derating above 50°C to 50% at 70°C.

TDK-Lambda | www.tdk-lambda.com

UI Software Framework for STM32 MCUs Gets Upgrade
STMicroelectronics (ST) has updated the TouchGFX user-

interface software framework for STM32 microcontrollers, 
adding new features that enable smoother and more dynamic 
user interfaces and lower demand on the memory and CPU. 
TouchGFX is a free tool in the STM32 ecosystem. Comprising 

two parts—TouchGFX Designer PC tool for designing and 
configuring rich user interfaces, and TouchGFX Engine software 
that runs on the end-device to secure high UI performance—
the latest version 4.12 contains updates to both. Users can 
now build sophisticated user interfaces on one-chip display 
solutions without external RAM or flash, save power for longer 
battery life and benefit from easier development to get to 
market faster.

In TouchGFX Engine, a partial framebuffer mode now allows 
the buffer to operate using as little as 6KB of RAM. A fully 
functioning user interface can now have just 16KB of RAM, 
so that small STM32 MCUs can deliver great user experiences 
without external memory. The updates to TouchGFX Designer 
include extensions to the powerful set of customizable widgets, 
adding features such as Scale and Rotate that increase the 
power of simple drag-and-drop programming. The complete 
TouchGFX Suite, including TouchGFX Designer and TouchGFX 
Engine, is available to download free of charge from  
www.st/com/touchgfxdesigner.

STMicroelectronics | www.st.com

http://www.tdk-lambda.com
http://www.st/com/touchgfxdesigner
http://www.st.com
http://www.iar.com
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TEST YOUR EQ 
Contributed by David Tweed 

Problem 1— The following code for a Microchip (formerly 
Atmel) ATmega328 is intended to scan a 3×4 keypad and 
return a code indicating which key, if any, is pressed. 
However, there’s a bug in it. Can you spot it?

#define KEYPAD A  
#define KEYPAD_PORT PORT(KEYPAD)
#define KEYPAD_DDR   DDR(KEYPAD)
#define KEYPAD_PIN   PIN(KEYPAD)

uint8_t GetKeyPressed()
{
  uint8_t r, c;
  KEYPAD_PORT |= 0X0F;
  for (c=0; c<3; c++) {
    KEYPAD_DDR &= ~(0X7F);
    KEYPAD_DDR |= (0X40>>c);
    for (r=0; r<4; r++) {
      /* If keys pressed, return code 0-11.
       */
      if (!(KEYPAD_PIN & (0X08>>r))) return 
(r*3+c);
    }
  }

  /* No keys pressed, return special code.
   */
  return 0XFF;
}

Problem 2— You are given a design task in which 
there’s a digital signal carrying pulses at a rate of 1Hz 
to 100Hz. The requirement is to produce a logic signal 
that is high when the input pulse rate falls between 
40Hz and 60Hz. The goal is to come up with the simplest 
circuit that can do this—preferably without using a 
microcontroller or anything other than commonly 
available SSI/MSI logic parts.

Problem 3— Can you think of any other applications 
for such a circuit?

Problem 4— The original Zilog Z80 microprocessor 
had about 8,500 transistors, and was produced with a 
minimum feature size of about 6 microns. If it were 
manufactured using modern 7nm transistors, how small 
would it be?

www.cc-webshop.com
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Safer Living Through 
AI and IoT

By 
Jen Bernier-Santarini, 
Adesto

The Future of IoT as Safety Resource

T he world is increasingly afflicted by natural disasters. 
Almost every day we turn on the news to see fires, floods, 
hurricanes, tsunamis and other storms striking yet another 
major population center. By now, many of us—or our families 

and friends—have been personally affected. And while in most cases we 
can’t yet prevent these occurrences, we can begin to better prepare for 
them and mitigate damage.

Disaster management is a very real area of research that predates 
much of today’s technology, and is one that is eager to embrace its 
potential. Experts in this area proffer three key pieces of advice: 
take measures to mitigate potential damage, implement means for 
immediate victim assistance and plan for rapid recovery. While these 
pieces of advice were probably originally conceived at a time when the 
main actors in disaster management would be people, technology can 
and is now helping with all three.

In some ways, huge trends, such as AI, the IoT and Big Data, have 
the intensity of natural phenomena, but they have the potential to be 
forces for good. We can now use technology to spread alerts faster 
than ever before, ensuring people living in areas of risk can be better 
prepared to take evasive action should the need arise. Smart sensors 
can now supply the raw data needed to detect potential threats sooner, 
and high-speed networks can deliver sensor data to server farms where 
AI can crunch the numbers to find patterns that match threats.

GLOBAL IMPACT
But there is much work to be done. The global financial impact 

of natural disasters has been estimated at more than $300 billion a 
year and climbing, with some estimates much higher when taking 
downstream impacts into account. Unfortunately, according to the 
United Nations 2019 Global Assessment Report on Disaster Risk 
Reduction (GAR2019) [1], today’s 
international development financing 
system allocates approximately 20 
times the funding to emergency 
response, reconstruction, relief and 
rehabilitation activities compared to 
that allocated for disaster prevention 
and preparedness.

So how will IoT technologies help 
with prevention and preparedness? 
The IoT is pervasive, and its technology 
is becoming less expensive, which 
makes endpoints like smart sensors 
more cost-effective and relatively 
easy to deploy (Figure 1). In terms 
of early warning systems, we 
can expect more raw data to be 
generated in areas prone to natural 
disaster through various sensors to 

FIGURE 1
The IoT is pervasive and its technology is becoming less expensive. That’s making endpoints like smart sensors 
more cost-effective and relatively easy to deploy.
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measure earth tremors, monitor sea levels, measure carbon 
monoxide/dioxide levels, monitor temperature and moisture 
levels and more. Changes in such elements can forewarn us 
of imminent danger.

The data generated by each of these sensors is the key. 
According to the GAR2019 report, today data collection is 
“…often fragmented, non-universal, incommensurable and 
biased, and the disconnect among ‘knowing’ something, 
making it ‘available and accessible’ and ‘applying’ what is 
known, often remains.” We see this same macro issue at 
work in local environments where IoT sensors are being used 
by municipalities and companies to gather data from various 
systems to create better living for citizens and employees.

Growing populations across the world are increasingly 
migrating to cities—many of which are rapidly turning into 
megacities with populations greater than 10 million people. 
In this environment, access to data becomes fundamental to 
safer living. In today’s cities, IoT technology can approximate 
how long it will take us to drive across the city, warn us of road 
accidents, map our route, and help us find a parking space.

But as populations in urban areas increase, the 
disproportional gulf between cause and effect will become 
more apparent. For example, road traffic incidents may be 
attributable to a build-up of traffic in another part of the city, 
or the lack of adequate lighting on a particular street. More 
densely inhabited areas may generate greater potential for 
incidents, because the margins for error will be eroded. If 
one person takes a different route home it makes little or no 
difference to congestion; if a hundred people do it, roads can 
become gridlocked.

This is where the integration of disparate systems and 
use of AI will make all the difference. In the future, real-time 
data, forming seemingly incoherent patterns, will be easily 
analyzed by AI technologies to make traffic flow better, or 
reduce the potential of hazards for pedestrians and cyclists. 
And it will happen behind the scenes, without us having to 
make a conscious effort to change our natural behavior. Right 
now, the systems to make this work aren’t seamless. These 
systems, even those that are connected to the internet, often 
exist in isolated silos.

SMART BUILDING EXAMPLE
Take a smart building as an example. Within a building, 

the access control systems, HVAC systems, lighting systems, 
elevators and other systems may all be “smart” in that they 
automatically turn on when needed, turn off when they aren’t 
needed, can be monitored and adjusted remotely, but they 
are generally disconnected from each other. It won’t be much 
use during an emergency if a building’s emergency lights turn 
on, but the doors remain locked.

The reason for the disconnect is largely a legacy issue: there 
are so many different, un-interoperable protocols, devices and 
services used in existing building management systems and 
other industrial control systems, that integration has become 
a real issue. Where these systems are able to connect and work 
together today, it often takes vast sums of money to fund the 
integration effort. What we need are simple, cost-effective 
ways to bridge legacy systems to new IoT systems to let us 
make use of the valuable data that the systems generate.

The SmartServer IoT from Adesto is designed to address 
this issue. It makes it easier to access the wealth of data 
an industrial control system may hold, to enable new 
solutions that could make a real difference to peoples’ lives. 
With SmartServer IoT, companies can easily connect their 
disparate, non-interoperable systems, devices, and services 
together and also connect to cloud platforms to make use of 
AI and predictive analytics—which can be used to understand 
trends and mitigate risks (Figure 2).

Natural disasters are potentially predictable, and 
manufactured incidents are often avoidable. Both rely on 
being able to observe, analyze and react to the world around 
us. And while global natural-disaster risk mitigation will 
require mega political, socioeconomic and cultural discussions 
and change, the AI and IoT technologies that can enable this 
change are increasingly available.

Today’s technology means that we are now more equipped—
through data—to defend ourselves, our homes and our 
possessions from harm. In the future, by bringing disparate 
systems together and making existing solutions more extensible, 
we can build even smarter and safer communities. 

For detailed article references and additional resources go 
to: www.circuitcellar.com/article-materials 
Reference [1] as marked in the article can be found there.
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Adesto Technologies | www.adestotech.com

Jen Bernier-Santarini is VP of Corporate Communications at 
Adesto, a provider of application-specific semiconductors and 
systems for IoT. Before joining Adesto in 2019, Jen led technol-
ogy communications for IP provider Imagination Technologies. 
With more than 25 years working in semiconductors and related 
technologies, her expertise includes electronic design automa-
tion (EDA) tools, connectivity technologies, processors and IP, 
flash memory and other off-the-shelf chips.

FIGURE 2
SmartServer IoT system diagram
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