



#### **Features**

- Supports Virtex-II™, Virtex-II Pro™, and Spartan-3<sup>™</sup> FPGAs
- 155 MHz maximum clock with Virtex-II Pro FPGA
- High-resolution block floating-point calculation using 16, 20 or 24-bit math
- FFT block sizes from 64 to 16384 points
- Complex block floating-point output formats: 16-, 20-, or 24-bit integer plus 6-bit exponent
- Matched filter reference may be entered in time or frequency domain
- Matched filter reference may be changed before processing each pulse, or may be stored and reused
- MatLab pulse compression utility functions included

## **General Information**

The Pentek Model 4954 GateFlow Library IP Core 440 performs radar pulse compression by performing matched filtering using a Fast Convolution Processing (FCP) algorithm.

Pulse compression improves range resolution for radar systems by allowing the use of longer pulses to increase the average transmitted power and receiver SNR. The core is designed specifically for Xilinx Spartan-3, Virtex-II and Virtex-II Pro FPGAs.

# Algorithm Description

An input FFT stage, programmable from 64 to 16k points, operates on the returned echo signal. The reference pulse spectrum can be entered directly into the Reference Pulse Spectrum RAM or computed from a reference pulse input using the input FFT. Either path allows the reference spectrum to be updated for each input pulse to support adaptive systems.

A complex multiplication is then performed on the complex conjugate of the reference spectrum and the input signal spectrum. The multiplier output block feeds an inverse FFT (IFFT) to produce the compressed time domain output pulse.

All sections of the core utilize block floating point computation in order to maximize dynamic range and eliminate the need to scale data in the FFT sections. The output is a time domain compressed pulse, represented as a 16-, 20-, or 24-bit integer part and a 6-bit block exponent reflecting total end-to-end scaling.

## **Flexible Architectures**

Two different architectures are available, one optimized for minimal FPGA resources, and one optimized for maximum throughput. The former uses a single, time-shared engine for both the input FFT and the IFFT, while the latter uses two separate engines resulting in twice the maximum frame rate at the expense of additional FPGA resources.

Within each architecture, four maximum FFT size versions are available: 2k, 4k, 8k and 16k points. Each version may be adjusted during operation to accommodate binary FFT sizes from 64 samples up to the maximum size. Also, each architecture is configurable with three data resolutions: 16, 20 and 24 bits.

#### **Speed Performance**

Operational speed of the core also depends on these same factors (architecture version, maximum FFT size and resolution), but additionally on the speed grade of the Xilinx FPGAs.

The chart below shows the maximum clock speed and the minimum frame-toframe period between two consecutive input data frames using 24-bit resolution.

|                                 | Maximum<br>Throughput |       | Minimal<br>Resource |       |
|---------------------------------|-----------------------|-------|---------------------|-------|
| Speed Grade                     | -5                    | -7    | -5                  | -7    |
| Max Clk (MHz)                   | 122                   | 155   | 122                 | 155   |
| Minimum Frame<br>Spacing (µsec) |                       |       |                     |       |
| 64 points                       | 2.00                  | 1.57  | 4.02                | 3.16  |
| 512 points                      | 14.09                 | 11.09 | 28.21               | 22.21 |
| 8k points                       | 252.4                 | 198.6 | 504.7               | 397.3 |

## **Resource Utilization**

FPGA resource utilization is shown below for four of the 24 combinations of the two architectures (maximum throughput or minimal resource), maximum FFT sizes (2k, 4k, 8k, and 16k) and bit resolutions (16, 20 and 24).

|                 | Maximum<br>Throughput |       | Minimal<br>Resource |       |
|-----------------|-----------------------|-------|---------------------|-------|
| FFT size        | 16k                   | 2k    | 16k                 | 2k    |
| Resolution-bits | 24                    | 16    | 24                  | 16    |
| Slices          | 10,166                | 5,527 | 6,072               | 3,202 |
| Slice LUTs      | 12,995                | 7,277 | 7,708               | 4,168 |
| Slice FFs       | 13,503                | 6,732 | 7,936               | 3,902 |
| Block RAM       | 253                   | 26    | 191                 | 19    |
| Block Mults     | 88                    | 22    | 52                  | 13    |
| Global Clocks   | 1                     | 1     | 1                   | 1     |



**Ordering Information** Model Description 4954-440 Pulse Compression IP Core



One Park Way 
Upper Saddle River 
New Jersey 07458 Pentek, Inc. Tel: 201.818.5900 Fax: 201.818.5904 Email: info@pentek.com