

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- Four 1.25 GHz 16-bit D/As
- Four digital upconverters
- Programmable output levels
- 250 MHz max. output bandwidth
- 2 GB of DDR3 SDRAM
- Sample clock synchronization to an external system reference
- Dual-µSync clock/sync bus for multiboard synchronization
- PCI Express (Gen. 1 & 2) interface up to x8
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O

General Information

Model 78670 is a member of the Cobalt® family of high performance PCIe boards based on the Xilinx Virtex-6 FPGA. This 4-channel, high-speed data converter is suitable for connection to transmit HF or IF ports of a communications or radar system. Its built-in data playback features offer an ideal turnkey solution for demanding transmit applications.

It includes four D/As, four digital upconverters and four banks of memory. In addition to supporting PCI Express Gen. 2 as a native interface, the Model 78670 includes optional general purpose and gigabit serial connectors for application-specific I/O.

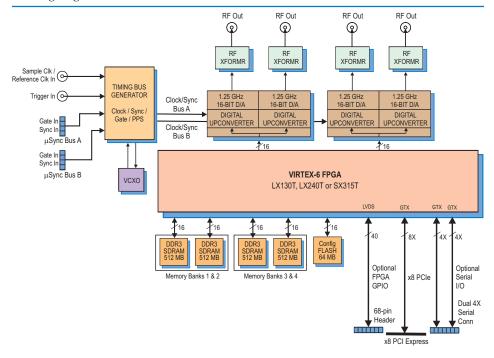
The Cobalt Architecture

The Pentek Cobalt Architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory-installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt Architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 78670 factory-installed functions include four D/A waveform playback IP modules, to support waveform generation through the D/A converters. IP modules for DDR3 SDRAM memories, a controller for all data clocking and synchronization functions, a test signal generator, and a PCIe interface

complete the factory-installed functions and enable the 78670 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory-installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 connects 20 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O.

Option -105 connects two 4X gigabit serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors along the top edge of the PCIe board.

➤ Digital Upconverter and D/A Stage

Two Texas Instruments DAC3484s provide four DUC (digital upconverter) and D/A channels. Each channel accepts a baseband real or complex data stream from the FPGA and provides that input to the upconvert, interpolate and D/A stage.

When operating as a DUC, it interpolates and translates real or complex baseband input signals to a user selectable IF center frequency. It delivers real or quadrature (I+Q) analog outputs to a 16-bit D/A converter.

If translation is disabled, each D/A acts as an interpolating 16-bit D/A with output sampling rates up to $1.25~\mathrm{GHz}$. In both modes, the D/A provides interpolation factors of 2x, 4x, 8x and 16x. Analog output is through four front panel SSMC connectors.

Clocking and Synchronization

An internal timing bus provides all required D/A clocking. The bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO. Either clock source (front panel or VCXO) can be used directly or can be divided by

2, 4, 8, or 16 to provide lower frequency D/A clocks.

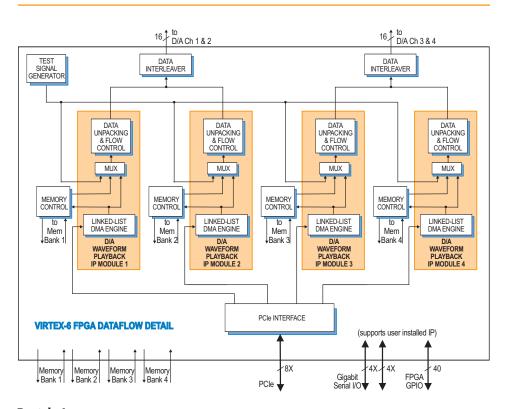
A pair of front panel μ Sync connectors allows multiple boards to be synchronized. They accept CML inputs that drive the board's sync and trigger/gate signals. The Pentek Models 7892 or 9192 Cobalt Synchronizers can drive multiple 78670 μ Sync connectors enabling large, multichannel synchronous configurations.

Memory Resources

The 78670 architecture supports four independent memory banks of DDR3 SDRAM. Each bank is 512 MB deep and is an integral part of the board's DMA and waveform playback capabilities. Waveform tables can be loaded into the memories with playback managed by the linked list controllers.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

PCI Express Interface


The Model 78670 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. The x8 lane interface includes multiple DMA controllers for efficient transfers to and from the board.

D/A Waveform Playback IP Module

The Model 78670 factory-installed functions include a sophisticated D/A Waveform Playback IP module. Four linked list controllers support waveform generation to the four D/As from tables stored in either on-board memory or off-board host memory.

Data for Channel 1 and Channel 2 are interleaved for delivery to a dual channel D/A device. For this reason, they must share a common trigger/gate, sample rate, interpolation factor, and other parameters. The same rules apply to Channel 3 and Channel 4. Parameters including length of waveform, waveform repetition, etc. can be programmed for each channel.

Up to 64 individual link entries for each D/A channel can be chained together to create complex waveforms with a minimum of programming.

➤ Specifications

D/A Converters

Type: TI DAC3484

Input Data Rate: 312.5 MHz max. Output Bandwidth: 250 MHz max. Output Sampling Rate: 1.25 GHz max.

with interpolation

Interpolation: 2x, 4x, 8x or 16x

Resolution: 16 bits

Front Panel Analog Signal Outputs

Quantity: Four D/A outputs

Output Type: Transformer-coupled, front panel female SSMC connectors Full Scale Output: Programmable from –20 dBm (0.063 Vp-p) to +4 dBm (1.0 Vp-p) in 16 steps

Full Scale Output Programming: 1.0x(G+1)/16 Vp-p, where 4-bit integer

G = 0 to 15

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO or front panel external clock

VCXO Frequency Ranges: 10 to 945 MHz, 970 to 1134 MHz and 1213 to 1417 MHz Synchronization: VCXO can be phase-locked to an external 4 to 200 MHz system reference, typically 10 MHz Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16 for the D/A clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 10 to 500 MHz sample clock or 5 or 10 MHz system reference

External Trigger Input

Type: Front panel female SSMC connector **Function:** Programmable functions include: trigger, gate, sync and PPS

Timing Bus: 19-pin μSync bus connector includes sync and gate/trigger inputs, CML

Field Programmable Gate Array

Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2 or XC6VSX315T-2

Custom I/O

Option -104: Connects 20 pairs of LVDS signals from the FPGA on PMC P14 to a 68-pin DIL ribbon-cable header on the PCIe board for custom I/O.

Option -105: Connects two 4X gigabit serial links from the FPGA on XMC P16 to two 4X gigabit serial connectors along the top edge of the PCIe board

Memory: Four 512 MB DDR3 SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen. 1 or Gen 2: x4 or x8;

Environmental

Operating Temp: 0° to 50° C **Storage Temp:** –20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** Half length PCIe card, 4.38 in. x 7.13 in.

Model 8266 The Model

The Model 8266 is a fully-integrated PC development system for Pentek Cobalt and Onyx PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model Description

78670 4-Channel 1.25 GHz D/A

with Virtex-6 FPGA - x8

PCle

Options:

•	
-002*	-2 FPGA speed grade
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-104	LVDS FPGA I/O through 68-pin ribbon cable connector
-105	Gigabit serial FPGA I/O through two 4X top edge connectors
-155*	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165*	Two 512 MB DDR3

(Banks 3 and 4)

* These options are always required

Model Description

8266 PC Development System

See 8266 Datasheet for

SDRAM Memory Banks

Options