1 GHz A/D and 1 GHz D/A, Virtex-6 FPGA - XMC

Features

- Complete radar and software radio interface solution
- Supports Xilinx Virtex-6 LXT and SXT FPGAs
- One 1 GHz 12-bit A/D
- One 1 GHz 16-bit D/A
- Up to 2 GB of DDR3 SDRAM or 16 MB of QDRII+ SRAM
- Sample clock synchronization to an external system reference
- Dual-µSync clock/sync bus for multimodule synchronization
- PCI Express (Gen. 1 & 2) interface up to x8
- Optional user-configurable gigabit serial interface
- Optional LVDS connections to the Virtex-6 FPGA for custom I/O

General Information

Model 71630 is a member of the Cobalt® family of high performance XMC modules based on the Xilinx Virtex-6 FPGA. A high-speed data converter, it is suitable for connection to HF or IF ports of a communications or radar system. Its built-in data capture and playback features offer an ideal turnkey solution as well as a platform for developing and deploying custom FPGA processing IP.

It includes 1 GHz A/D and D/A converters and four banks of memory. In addition to supporting PCI Express Gen. 2 as a native interface, the Model 71630 includes optional general purpose and gigabit serial card connectors for application-specific I/O.

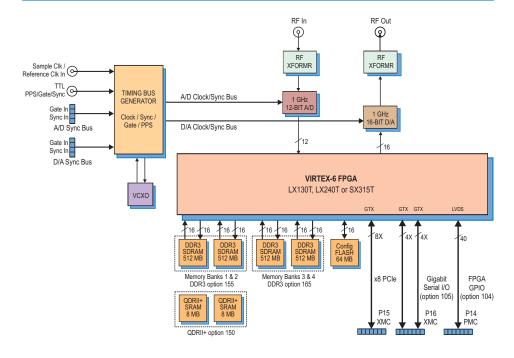
The Cobalt Architecture

The Pentek Cobalt architecture features a Virtex-6 FPGA. All of the board's data and control paths are accessible by the FPGA, enabling factory installed functions including data multiplexing, channel selection, data packing, gating, triggering and memory control. The Cobalt architecture organizes the FPGA as a container for data processing applications where each function exists as an intellectual property (IP) module.

Each member of the Cobalt family is delivered with factory-installed applications ideally matched to the board's analog interfaces. The 71630 factory-installed functions include an A/D acquisition and a D/A waveform playback IP module. In addition, IP modules for either DDR3 or QDRII+ memories, a controller for all data clocking and

synchronization functions, a test signal generator and a PCIe interface complete the factory-installed functions and enable the 71630 to operate as a complete turnkey solution, without the need to develop any FPGA IP.

Extendable IP Design


For applications that require specialized functions, users can install their own custom IP for data processing. Pentek GateFlow FPGA Design Kits include all of the factory installed modules as documented source code. Developers can integrate their own IP with the Pentek factory-installed functions or use the GateFlow Design Kit to completely replace the Pentek IP with their own.

Xilinx Virtex-6 FPGA

The Virtex-6 FPGA site can be populated with a variety of different FPGAs to match the specific requirements of the processing task. Supported FPGAs include: LX130T, LX240T, or SX315T. The SXT part features 1344 DSP48E slices and is ideal for modulation/demodulation, encoding/decoding, encryption/decryption, and channelization of the signals between transmission and reception. For applications not requiring large DSP resources, one of the lower-cost LXT FPGAs can be installed.

Option -104 installs the P14 PMC connector with 20 pairs of LVDS connections to the FPGA for custom I/O.

Option -105 installs the P16 XMC connector with one 8X or two 4X gigabit links to the FPGA to support serial protocols.

A/D Acquisition IP Module

The 71630 features an A/D Acquisition IP Module for easy capture and data moving. The IP module can receive data from the A/D, a test signal generator, or from the D/A Waveform Playback IP Module in loopback mode. The IP module has associated memory banks for buffering data in FIFO mode or for storing data in transient capture mode. The memory banks are supported with a DMA engine for moving A/D data through the PCIe interface.

This powerful linked-list DMA engine is capable of a unique Acquisition Gate Driven mode. In this mode, the length of a transfer performed by a link definition need not be known prior to data acquisition; rather, it is governed by the length of the acquisition gate. This is extremely useful in applications where an external gate drives acquisition and the exact length of that gate is not known or is likely to vary.

For each transfer, the DMA engine can automatically construct metadata packets containing a sample-accurate time stamp, and data length information. These actions simplify the host processor's job of identifying and executing on the data.

D/A Waveform Playback IP Module

The Model 71630 factory-installed functions include a sophisticated D/A Waveform Playback IP module. A linked-list controller allows users to easily play back waveforms stored in either on-board memory or off-board host memory to the D/A.

Parameters including length of waveform, delay from playback trigger, waveform repetition, etc. can be programmed for each waveform.

Up to 64 individual link entries can be chained together to create complex waveforms with a minimum of programming.

➤ A/D Converter Stage

The front end accepts an analog HF or IF input on a front panel SSMC connector with transformer coupling into a Texas Instruments ADS5400 1 GHz, 12-bit A/D converter.

The digital outputs are delivered into the Virtex-6 FPGA for signal processing, data capture or for routing to other module resources.

D/A Converter Stage

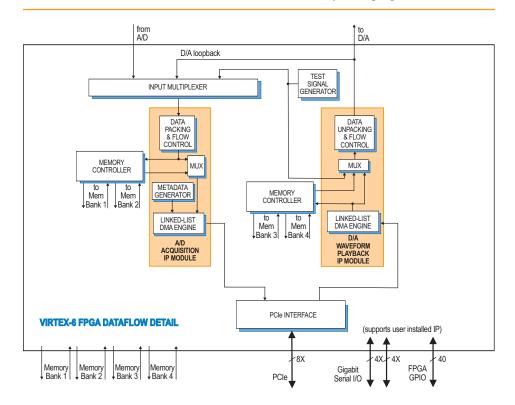
The 71630 features a TI DAC5681Z 1 GHz, 16-bit D/A. The converter has an input sample rate of 1 GSPS, allowing it to acept full rate data from the FPGA. Additionally, the D/A includes a 2x or 4x interpolation filter for applications that provide 1/2 or 1/4 rate input data. Analog output is through a front panel SSMC connector.

Clocking and Synchronization

Two internal timing buses provide either a single clock or two different clock rates to the A/D and D/A signal paths.

Each timing bus includes a clock, sync and a gate or trigger signal. An on-board clock generator receives a sample clock either from the front panel SSMC connector or from an on-board programmable VCXO (Voltage-Controlled Crystal Oscillator). In this latter mode, the front panel SSMC connector can be used to provide a 10 MHz reference clock to phase-lock the VCXO.

Either clock source (front panel or VCXO) can be used directly or can be divided independently by 2, 4, 8, or 16 to provide different lower frequency A/D and D/A clocks


A pair of front panel μ Sync connectors allows multiple modules to be synchronized. They accept CML inputs that drive the board's sync and gate/trigger signals.

The Pentek Model 7192 and Model 9192 Cobalt Synchronizers can drive multiple 71630 µSync connectors enabling large, multichannel synchronous configurations. Also, an LVTTL external gate/trigger input is accepted on a front panel SSMC connector.

Memory Resources

The 71630 architecture supports up to four independent memory banks which can be configured with all QDRII+ SRAM, DDR3 SDRAM, or as combination of two banks of each type of memory. Each QDRII+ SRAM bank can be up to 8 MB deep and is an integral part of the module's DMA capabilities, providing FIFO memory space for creating DMA packets. For applications requiring deep memory resources, DDR3 SDRAM banks can each be up to 512 MB deep. Built-in memory functions include an A/D data transient capture mode and D/A waveform playback mode.

In addition to the factory-installed functions, custom user-installed IP within the FPGA can take advantage of the memories for many other purposes.

1 GHz A/D and 1 GHz D/A, Virtex-6 FPGA - XMC

Model 8266

The Model 8266 is a fully-integrated PC development system for Pentek Cobalt, Onyx and Flexor PCI Express boards. It was created to save engineers and system integrators the time and expense associated with building and testing a development system that ensures optimum performance of Pentek boards.

Ordering Information

Model	Description
71630	1 GHz A/D and D/A,
	Virtex-6 FPGA - XMC

Options:

op.ioiioi	
-002*	-2 FPGA speed grade
-062	XC6VLX240T FPGA
-064	XC6VSX315T FPGA
-104	LVDS FPGA I/O through P14 connector
-105	Gigabit serial FPGA I/O through P16 connector
-150	Two 8 MB QDRII+ SRAM Memory Banks (Banks 1 and 2)
-155	Two 512 MB DDR3 SDRAM Memory Banks (Banks 1 and 2)
-165	Two 512 MB DDR3 SDRAM Memory Banks (Banks 3 and 4)

* This option is always required

Contact Pentek for availability of rugged and conduction-cooled versions

Model Description	n	
-------------------	---	--

8266 PC Development System See 8266 Datasheet for Options

➤ XMC Interface

The Model 71630 complies with the VITA 42.0 XMC specification. Two connectors each provide dual 4X links or a single 8X link with up to a 6 GHz bit clock. With dual XMC connectors, the 71630 supports x8 PCIe on the first XMC connector leaving the second connector free to support user-installed transfer protocols specific to the target application.

PCI Express Interface

The Model 71630 includes an industrystandard interface fully compliant with PCI Express Gen. 1 & 2 bus specifications. Supporting PCIe links up to x8, the interface includes multiple DMA controllers for efficient transfers to and from the module.

Specifications

Front Panel Analog Signal Inputs

Input Type: Transformer-coupled, front panel female SSMC connectors

A/D Converter

Type: Texas Instruments ADS5400 **Sampling Rate:** 100 MHz to 1 GHz **Resolution:** 12 bits

D/A Converter

Type: Texas Instruments DAC5681Z Input Data Rate: 1 GHz max. Interpolation Filter: bypass, 2x or 4x Output Sampling Rate: 1 GHz max. Resolution: 16 bits

Front Panel Analog Signal Outputs

Output Type: Transformer-coupled, front panel female SSMC connectors

Sample Clock Sources: On-board clock synthesizer generates two clocks: one A/D clock and one D/A clock

Clock Synthesizer

Clock Source: Selectable from on-board programmable VCXO or front panel external clock

VCXO Frequency Ranges: 10 to 945 MHz, 970 to 1134 MHz, and 1213 to 1417 MHz

Synchronization: VCXO can be phase-locked to an external 4 to 200 MHz system reference, typically 10 MHz

Clock Dividers: External clock or VCXO can be divided by 1, 2, 4, 8, or 16, independently for the A/D clock and D/A clock

External Clock

Type: Front panel female SSMC connector, sine wave, 0 to +10 dBm, AC-coupled, 50 ohms, accepts 100 MHz to 1 GHz divider input clock, or PLL system reference

Timing Bus: 19-pin μSync bus connector includes sync and gate/trigger inputs, CML

External Trigger Input

Type: Front panel female SSMC connector, LVTTL

Function: Programmable functions include: trigger, gate, sync and PPS

Field Programmable Gate Array

Standard: Xilinx Virtex-6 XC6VLX130T-2 Optional: Xilinx Virtex-6 XC6VLX240T-2 or XC6VSX315T-2

Custom I/O

Option -104: Installs the PMC P14 connector with 20 LVDS pairs to the FPGA Option -105: Installs the XMC P16 connector configurable as one 8X or two 4X gigabit serial links to the FPGA

Memory

Option 150: Two 8 MB QDRII+ SRAM memory banks, 400 MHz DDR
Option 155 or 165: Two 512 MB DDR3
SDRAM memory banks, 400 MHz DDR

PCI-Express Interface

PCI Express Bus: Gen.1: x4 or x8; Gen 2: x4

Environmental

Operating Temp: 0° to 50° C **Storage Temp:** -20° to 90° C

Relative Humidity: 0 to 95%, non-cond. **Size:** Standard XMC module, 2.91 in. x 5.87 in.

