C-Language Programming for DSP

Programming in C for digital
signal processing applications
has moved into widespread use
and many powerful tools have
been developed to assist the
programmer. By first under-
standing some of the basic
concepts and special consider-
ations involved, the experience
can be extremely rewarding.

As the software tools strive
to keep pace with the rapid
development of powerful new
DSP devices, the mastery of
special programming skills will
continue to be an exciting and
dynamic process.

PENTEIK

he C programming language has
I become the language of choice for

many engineering applications,
especially digital signal processing. The C
language is extremely portable, compact,
and lends itself well to structured pro-
gramming techniques. It has been ported
to virtually every major programming
platform and is the predominant system
programming language for the major oper-
ating systems used today:

Programmers familiar with the C lan-
guage on PC or UNIX platforms should be
aware of some key differences between C
programming for general-purpose work-
stations and C programming for DSPs.
Areas of attention include differences
between native and cross compilers, simu-
lators, I/O library support, run-time
libraries, linkers, and memory modules.

The major difference in C compilers for
DSP, as compared to typical C compilers
found in most workstations, is that the object
code produced does not execute on the host
CPU, but rather on the DSP chip in the target
board. This type of C compiler is called a
cross compiler. The more conventional C
compiler which produces code for the host
CPU is known as a native compiler.

The reason that cross compilers are so
much more appropriate than native compilers
for DSP is that virtually no DSP processor
environment can come close to providing all
of the supporting I/O resources available on
even the most modest workstation.

Since the DSP code produced by the
cross compiler cannot execute on the host
CPU, there are two methods of testing and
developing DSP code.

First, the DSP processor can be simulated
by a host program known as a simulator.
The simulator closely mimics the operation
of the DSP chip so that executable DSP ob-
ject code is processed as it would be by the
DSP chip. Memory and I/O is also simu-
lated so that the DSP target environment is
matched as closely as possible. Simulators
can be very useful for developing algorithms
and for developing program flow and
integrity.

However, this rather sterile environment
insulates the programmer from the hard-
ware-specific features of the target board
which often represent some of the most
critical aspects of application development,
usually dealing with I/O.

As an alternative to simulation or as the
next step after simulation, one can move

Pentek, Inc. One Park Way Upper Saddle River « New Jersey 07458

the executable code directly into a DSP tar-
get environment and then use debug
software to start it running and control ex-
ecution. Running code on “the real thing”
has the advantages of using actual hard-
ware for input/output data and in
evaluating real-time performance.

Standard 1/0

A fundamental aspect of the C language
is that it contains no environment-specific
input or output resources. Therefore, each
incarnation of a C compiler requires a stan-
dard I/O library tailored specifically for
each operating environment.

During debugging and development it
may be required that standard I/O be redi-
rected to the host. In this case, the I/O
function must accommodate a communica-
tion link from target to host. Whatever the
link, the collection of standard I/O library
functions must be chosen to support the
desired operation.

In complex DSP environments utilizing an
operating system executing on the DSF, an
abstract path may exist between target and
host, often involving several layers of calls.

Run-time Libraries

The C language itself contains no inher-
ent routines for the many math functions,
string operations, and memory management
tasks required by all DSP applications.
Instead, as with the standard I/O functions,
the ANSI C standard defines a set of run-
time library functions to be supplied as part
of a C compiler package.

Most DSP C compilers incorporate an
extensive set of run-time library functions,
including trigonometric and transcendental
functions; range limit functions for different
types of variables supported; string manipu-
lation functions; data type declaration
functions; and time functions handling
seconds to years with calendar notations.

The run-time libraries are often written as
very efficient assembly language routines,
optimized to take advantage of the special
architectural features of the target DSP.

DSP Libraries

The need to extend the scope of the run-
time libraries to include more exotic and
powerful routines common to DSP applica-
tions is satisfied by a class of routines
called DSP libraries. They include vector
and matrix arithmetic operations, FFTs,

[Continued on next page]

Tel: 201:8185900 ¢ Fax: 201-818:5904 ¢ Email: info@pentek.com

www.pentek.com

http://www.pentek.com

-
Text Editor [l » C Source Code
y
Cross
Board Support i
Libraries Compiler
y
Standard
1/0 Libraries Cross
Assembler
Run-time
ibrari y
Libraries "I g
> Linker
DSP ol
Libraries
\ 4
Debugger Loader
‘ \ 4
Host-to-Target
Link
Target
DSP Board
.

DSP programming is a
multistep operation.

PENTEIK

digital filtering routines, windowing func-
tions, and image processing routines.

These functions allow the DSP code de-
veloper to work at a much higher level and
alleviate the burden of reinventing com-
mon signal processing tasks. In some cases,
however, the routines involve trade-offs in
execution speed vs. ease of use. Custom
versions of these functions can be easily
substituted in these cases.

Some of these library functions are
supplied with the C compiler and some are
available from third party vendors.

Board Support Libraries

The Board Support Libraries offer a fast
and tested approach to programming hard-
ware. Functions provided within these
libraries allow the programmer to access the
hardware at different architectural levels.

For example, a board support library
written for a 16-channel A/D interface may
include high-level functions such as
reset_all_A/Ds(), or initialize_board() which
program the global settings of the board.

Pentek offers ReadyFlow Board Support
Libraries, a collection of high-level C-callable
functions, to simplify system development.

DSP Memory Models

An important consideration when using
a C compiler optimized for DSP applications
is its linker and memory model. Most com-
pilers, such as the TI C Compiler, produce
an intermediate assembly language output
file. The assembly language file is then
processed by an assembler to produce a
relocatable object file.

One advantage of the intermediate
assembly language phase is that it allows
inspection and modification of the assem-
bly code, often necessary for debugging
target hardware/software interactions.

In conventional native C compilers run-
ning on a host system, all memory sections
are typically allocated to one region of
system RAM. However, a C compiler for
DSP must be capable of carefully allocating
these sections of code to the many different
kinds of memory typically found on DSP
target boards—fast SRAM, slower DRAM,
external ROM, and nonvolatile RAM. There
are also many kinds of hardware devices
which can be addressed like memory, includ-
ing registers, FIFOs, counters, and UARITS.

Pentek, Inc. One Park Way Upper Saddle River « New Jersey 07458

Initialized code sections can be allocated
to RAM or ROM, while the uninitialized
sections must be allocated to RAM. This
allocation is handled by the linker which
processes all the relocatable object files
from the assembler, the run-time library
functions, standard I/O and DSP library
functions. The linker allocates code sections
from each of these structures into larger, ho-
mogenous regions of the same type.

The final result is a single file divided
into sections for each code type, each with
a header specifying where that section is to
be placed when loaded into the hardware
target memory space.

Host-to-Target Links

One of the most challenging aspects of
DSP code development is establishing an
easy-to-use method of communication
between the host workstation and the target
DSPboard. There are many different
combinations of host/target environments
which involve the use of bus adapters,
Ethernet adapters, emulators, embedded
board level host processors, integral card
cages and backplanes, as well as many one-
of-a-kind interfaces.

This problem is often complicated by hav-
ing multiple DSP processors on one board,
multiple target DSPboards, or even multiple
card cages full of target DSP boards. What-
ever the arrangement, in order for the
loader to execute successfully, the host
must be able to access each DSP target
memory environment.

To solve this problem, Pentek has
developed SwiftNet, a universal, bidirec-
tional communication protocol between
host and target.

Debuggers

As stated earlier, one of the most powerful
tools for code development is the interactive
debugger. With this approach, once the object
code has been loaded into the target DSP
memory, the user can start, monitor, and
control the execution of the processor.

This requires an even more powerful
kind of host-to-target link than the one neces-
sary for the loader. In addition to accessing
target memory, the host must be able to ex-
amine all internal CPU registers, access other
hardware resources on the target board, set
breakpoints, single step through instructions,
and, in general, manipulate the target DSP in
many different ways. [_]

Tel: 201:8185900 ¢ Fax: 201-818:5904 ¢ Email: info@pentek.com

www.pentek.com

http://www.pentek.com

