
Rodger H. Hosking, Vice President
Pentek

F or decades pulse compression has
brought its many advantages to
radar systems. First implemented

with analog sweep generators and corre-
lators, pulse compression is today almost
exclusively performed with digital signal

processing hardware and software.
Indeed, the architectures of early DSPs
were strongly influenced by the calcula-
tions and data movement requirements
of radar. Because the FFT algorithm is
usually the most critical operation in
pulse compression, FFT benchmarks are
consistently used to compare perfor-
mance among DSP chips.

FPGA Cores Enhance Radar Pulse
Compression

Since fast Fourier transforms (FFTs)
involve a tremendous number of multi-
plications, the appearance of dedicated
hardware multipliers was the single most
important factor in DSPs to set them
apart from conventional microproces-
sors. Thanks to the advent of dedicated
hardware multipliers in field-program-
mable gate arrays (FPGAs) about five

Hardware Assets
COTS

FPGA Update

Numerous obstacles and tradeoffs are inherent in digital pulse compression design.
Specialized FPGA IP cores help smooth the way.

Radar Pulse Compression Basics
Early radar systems transmitted a strong

pulse of RF energy and displayed reflections of
the pulse on the familiar circular display screen,
whose scanning beam matched the angle of the
rotating dish antenna. The phosphor “blip” on the
radar screen appeared at a radial distance from
the screen center directly proportional to delay

time of the reflected signal, and hence its dis-
tance. Range and resolution of these fixed-fre-
quency pulse systems were limited by their
peak power levels and pulse widths, respec-
tively. Resolution could be improved by narrow-
ing the pulse, but this reduced the outgoing
peak energy resulting in compromised range
performance, and also required wider band-

width operation for both the transmitter and
receiver systems.

Pulse compression is a technique that helps
overcome these limitations. Instead of a fixed fre-
quency pulse, the transmitted pulse is modulated
by a specific phase or frequency pattern during a
wider pulse interval. The receiver uses a pulse-
matched filter to pass reflected pulses that match
the pattern of the outgoing pulse and reject noise
and other signals. Since the transmitted pulse is
wider, a lower peak power output stage can deliv-
er the same amount of transmitted pulse energy
to maintain range performance. Figure A shows a
basic block diagram of the system.

One popular form of pulse compression
modulation is the linear frequency sweep, or
chirp. The pulse-matched filter in the receiver
implements a form of correlation to produce a
narrow output pulse only when the received sig-
nal contains the exact frequency chirp pattern in
the transmit pulse. In this way, the wide trans-
mitted pulse is effectively compressed to a nar-
row pulse at the output of the correlator. The
ratio of the transmitted pulse to the compressed
pulse, known as the pulse compression ratio, is
equal to B•T, where B is the bandwidth of the
sweep and T is the transmitted pulse width.

[32] COTS Journal October 2003

In this basic diagram of a pulse compression radar system, the receiver uses a pulse-
matched filter to pass reflected pulses that match the pattern of the outgoing pulse and reject
noise and other signals.

Figure A

Display Screen

FM or PM
Modulator

Pattern
Generator

Pulse
Matched

Filter

Radar
Transmitter

Radar
Receiver

Pulse Compression Radar

Fo
r

R
e

p
ri

n
t

O
rd

e
rs

C
al

l
(9

4
9

)2
2

6
-2

0
0

0
 /

 ©
2

0
0

3
 T

h
e

 R
TC

 G
ro

u
p

Hardware Assets

years ago, these devices now challenge
general-purpose programmable DSPs for
signal processing tasks in many DSP
applications, especially radar.

Instead of the one to four multiplier
engines found in most DSPs, FPGAs now
sport dozens and even hundreds of dedi-
cated hardware multipliers. Compared
with the iterative multiplications per-
formed by program loops in DSPs, mul-
tiplications in FPGAs can be executed in
parallel to deliver unprecedented FFT
benchmarks. Nevertheless, critical design
tradeoffs and obstacles must be evaluated
and overcome to ensure a successful
FPGA implementation for radar pulse
compression.

Design Tradeoffs and Issues
Two fundamental properties of any

DSP algorithm are speed and accuracy. A
third factor for FPGA designs is the num-
ber of resources—gates, slices, multipliers
and so on—consumed. Unlike DSPs with
fixed hardware resources, FPGAs are
offered as a family of devices, whose
members contain hardware resources

ranging in quantity by more than an
order of magnitude. Since algorithm
speed and accuracy can be traded off for
the number of hardware resources, many
different architectural choices may be
required to maximize performance for
the size, cost and power constraints of
specific FPGA family members. For this
reason, a general-purpose IP core should
be scalable for size vs. performance. Three
DSP characteristics that have a direct
impact on pulse compression are operat-
ing modes, dynamic range, and speed.

Operating Modes
In order to handle diverse classes of

targets and a variety of mission objec-
tives, pulse compression systems often
need multiple operational modes to sup-
port FFTs of different lengths, a range of
pulse repetition rates and several levels of
dynamic range. While FPGAs can be re-
programmed by downloading a new con-
figuration code for each mode, it’s better
to include support for all required modes
within a given FPGA design. In this way,
the operator can switch quickly and easily

between modes by passing control para-
meters to FPGA registers.

Dynamic Range
The frequency chirp is one of the

most commonly used modulation pat-
terns for radar (see sidebar article), and
its energy is inherently spread across a
frequency band. Since the first stage of
pulse compression is an FFT, this chirp
signal results in energy distributed over
many FFT bins, with relatively low energy
levels in any single bin. At the same time,
radar systems must be able to accommo-
date strong, fixed frequency signals from
extraneous interfering sources without
overloading.

This imposes tough dynamic range
requirements at the output of the FFT
stage. With enough headroom to handle
the strong signals, the smaller distributed
frequency components of the chirp still
need enough bits of resolution to provide
accurate correlation in the following
stages.

True floating-point processing solves
this dynamic range problem quite well.

With the narrower compressed pulse, reso-
lution is improved dramatically and reasonable
range performance can be achieved with low
power transmitters. This allows dramatic
improvements for all radar systems, especially for
airborne applications where size, weight and
power are critical factors.

This vital advantage obviously mandates
increased complexity in the signal processing
stages of the transmitter and receiver. Hence, radar
has been one of the prime motivators for advance-
ments in digital signal processing technology.

Implementing a Pulse-Matched Filter
One popular method of implementing a pulse-

matched filter takes advantage of a well-known
DSP technique: correlation of time domain signals
can be achieved by a multiplication in the frequen-
cy domain. Intuitively, the frequency domain repre-
sentation of two correlated time waveform signals
will have identical frequency domain signatures for
the portion of the signals with matching patterns.

By multiplying the two frequency domain
vectors (with a complex conjugate applied to one
of the vectors), the resulting product will produce
a match that is independent of the time alignment
between the two signals. So regardless of when

the reflected radar signals are received, the
pulse-matched filter will respond uniquely for
each target returning energy. When this product
vector is converted back to the time domain,
each target will produce a narrow pulse whose
delay and amplitude correspond to target dis-

tance and size, respectively. Since the FFT con-
verts time domain signals to frequency domain
signals, and the IFFT (inverse FFT) performs
the opposite conversion, these two algorithms
are key blocks in the pulse compression system
(Figure B).

October 2003 COTS Journal [33]

Shown here is a complete digital pulse compression block with the FFT at the input to process
radar receiver signals. In the center, the frequency domain image of the transmitter modula-
tion pattern is stored as the reference pulse spectrum. Its complex conjugate is multiplied by
the frequency domain signal from the FFT to accomplish the correlation function. The IFFT
stage at the right produces the final time domain pulse compressed output signal.

Figure B

Basic Pulse Compression Core

Uncompressed
Time Domain
Input Pulse

Compressed
Time Domain
Output Pulse

Frequency
Domain

Frequency
Domain

Frequency
Domain

Complex Multiplier

Complex Conjugate

Reference Pulse
Spectrum

FFT IFFT

Fo
r

R
e

p
ri

n
t

O
rd

e
rs

C
al

l
(9

4
9

)2
2

6
-2

0
0

0
 /

 ©
2

0
0

3
 T

h
e

 R
TC

 G
ro

u
p

Hardware Assets

However, FPGAs are quite inefficient in
implementing floating-point operations,
since the native hardware is fixed point.
In the Xilinx Virtex-II family, for exam-
ple, the dedicated hardware multipliers in
FPGAs are fixed-point engines, accepting
two 18-bit inputs and producing a 36-bit
product.

Although a 36-bit result at the FFT
output may have enough dynamic range,
with this type of multiplier the subse-
quent conjugate multiplication stage
(sidebar Figure B) can accept only the18
most significant of these 36 bits. This can
result in loss of critical signal energy of
the smaller chirp signal components,
especially for wide chirp bandwidths.

Combining three or more 18 x 18 multi-
pliers with some additional logic can cre-
ate higher precision fixed-point multipli-
ers, but this quickly consumes multipliers
and also adds pipeline delays to slow
speed performance.

Speed
Pulse compression radar systems

must be capable of processing all reflec-
tions from an outgoing pulse in a given
stage before signals arrive from the next
pulse. Certain modes of operation
require a fast pulse repetition rate, which
drives the processing speed requirements
of the pulse compression engine.

FPGAs operate as synchronous state

machines utilizing a system clock to
propagate data into registers between
logic stages. A significant portion of the
FPGA design effort involves minimizing
digital signal paths so that the system
clock can be increased to reduce process-
ing time.

Factors that affect propagation
delays are logic complexity (several levels
of gate logic), extended precision arith-
metic (as discussed above with the higher
precision multipliers) and the basic speed
of the silicon. Complex logic and extend-
ed precision arithmetic blocks can some-
times be partitioned into multiple
clocked stages in order to boost the clock
speed, but this added latency might
impact a critical speed path. All FPGA
vendors offer devices in a range of silicon
speed grades, so that buying a faster
(more expensive) device may enable a
particular design to operate at the
required clock rate.

Overcoming Obstacles
In designing a radar pulse compres-

sion IP core flexible enough for diverse
systems, it soon became clear that the
conflicting demands for size, dynamic
range and speed would require some
clever signal processing techniques and
multiple architectures. Some of the
strategies for meeting these objectives for
Pentek’s GateFlow 4954-440 Pulse
Compression IP Core are described
below. The core is targeted for the Virtex-
II, Virtex-II Pro and Spartan device fam-
ilies from Xilinx.

To tackle the dynamic range issue, a
major design decision was made to utilize
block floating-point arithmetic through-
out to achieve some of the accuracy ben-
efits of floating-point math while pre-
serving the reduced size benefits of fixed-
point hardware. This technique involves
adaptive scaling of all of the points in a
vector by the same amount, so that the
largest point just fits in the bit field with-
out overflowing.

In practice, all of the output points
of a particular signal processing stage are
stored in a RAM. The entire output block
(or vector) is then scanned to determine
the largest point. Then all of the points in
the block are left-shifted by the same
number of bits required to left-justify the

[34] COTS Journal October 2003

In its maximum performance architecture version, the Core 440 has separate dedicated
engines, one for the FFT and another for the inverse FFT (IFFT).

Figure 1

Maximum Performance Pulse Compression Core 440

Uncompressed
Input Pulse

Compressed
Pulse Out

Block Floating
Point FFT

64 to 16k points

Block Floating
Point IFFT

64 to 16k points

Block
Floating Point

Complex Multiplier

Reference Pulse
Spectrum RAM

Complex Conjugate

Reference Pulse
Spectrum

(Alternate
Reference

Mode)

In its ok resource configuration, the Core 440 has switches at the input and output of the
FFT/IFFT block to engage the signal flow paths at the appropriate times. Because the resulting
output of both architectures is identical, users can tradeoff speed for resource utilization.

Figure 2

Minimum Resource Pulse Compression Core 440

Uncompressed
Input Pulse

Compressed
Pulse Out

Reference Pulse
Spectrum

(Alternate
Reference

Mode)

Block Floating
Point FFT/IFFT

64 to 16k points

IFFT

FFT

IFFT

FFT Block
Floating Point

Complex Multiplier

Complex Conjugate

Reference Pulse
Spectrum RAM

Fo
r

R
e

p
ri

n
t

O
rd

e
rs

C
al

l
(9

4
9

)2
2

6
-2

0
0

0
 /

 ©
2

0
0

3
 T

h
e

 R
TC

 G
ro

u
p

Hardware Assets

largest point. This number of shifts is
then tagged with the block as its expo-
nent and passed on to the next stage.

Three block floating-point conver-
sion stages are incorporated in the Core
440 design, as shown in Figure 1. With
this arrangement, block floating-point
arithmetic maximizes the dynamic range
of a given word length and adaptively
scales for changing signal levels automat-
ically after each of the three stages. The
output pulse is delivered in block float-
ing-point format to preserve accuracy.

To handle varying accuracy require-
ments under this block floating-point
scheme, the core is offered with three dif-
ferent word lengths (mantissa): 16, 20
and 24 bits. The 16-bit version uses a sin-
gle 18 x 18 multiplier stage while the 20
and 24-bit versions use the bulkier com-
pound multiplier stages described earlier.

Reusing Hardware
Since the FFT and the IFFT blocks

involve nearly identical processing tasks,
it is possible to use the same FPGA hard-
ware to perform these two operations
sequentially. If the pulse repetition rate is
low enough, this can result in a dramatic
reduction in the number of FPGA
resources.

Accordingly, the core offers two dif-
ferent architectures. The maximum per-
formance architecture version is shown
in Figure 1, with two dedicated engines,
one for the FFT and another for the
inverse FFT (IFFT). The minimum
resource architecture, shown in Figure 2,
includes switches at the input and output
of the FFT/IFFT block to engage the sig-
nal flow paths at the appropriate times.
The resulting output of both architec-
tures is identical, so users can tradeoff
speed for resource utilization, perhaps
allowing the core to fit in a much smaller
device or leaving room for additional
functions.

In all, the Core 440 offers three dif-
ferent bit widths for the processing
engines, four different maximum length
FFTs and two different speed/resource
architectures for a total of 24 different
configurations. This flexibility comes in
handy since requirements may shift dur-
ing the design cycle. Although FPGA
development tools are improving rapidly,

nothing replaces the intuition and guid-
ance of an experienced design engineer
who uses a blend of hardware and soft-
ware skills to balance performance needs
against the physical realities of config-
urable logic.

Pentek Corp.
Upper Saddle River, NJ.
(201) 818-5900.
[www.pentek.com].

October 2003 COTS Journal [37]

Fo
r

R
e

p
ri

n
t

O
rd

e
rs

C
al

l
(9

4
9

)2
2

6
-2

0
0

0
 /

 ©
2

0
0

3
 T

h
e

 R
TC

 G
ro

u
p

