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Tools Target Real-Time Data Acquisition Systems 
 
Software modules in the real-time and non-real-time domains of a proposed model for real-time 
hardware recording systems help maintain performance while easing software development tasks. 
By Rodger Hosking,Pentek, Inc. 
 
With each new opportunity, designers of real-time data acquisition and analysis 
systems confront a unique set of development challenges specific to the 
requirements at hand. Although methodology and lessons learned in previous 
projects are invaluable, over time each new system introduces increasingly more 
complex hardware and software. Guessing correctly about how long 
development will take, choosing the right approach and selecting the appropriate 
tools are crucial for delivering the project on time and coming out ahead on the 
bottom line. 
 
The Real-Time Data Acquisition Hardware Environment 

A typical real-time data acquisition system includes high-speed A/D and D/A 
converters plus the associated circuitry for clocking, gating, triggering and 
synchronizing multiple channels (Figure 1). Digital up-converter and down-
converter ASICs provide frequency translation for communication and radar 
applications. FPGAs handle tough real-time signal processing tasks such as 
FFTs, decoding and encoding, decryption and encryption, modulation and 
demodulation, and beamforming. A fast memory helps boost efficiency of data 
transfers by buffering blocks of real-time signal data. A control processor 
manages system resources and often performs additional signal processing and 
data formatting tasks. Often, a fast hard disk allows the system to handle real-
time storage and playback of signal data. 
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Connected through an Ethernet link, a host PC workstation running Windows or 
Linux provides essential, non-real-time hardware resources for the operator 
interface, including monitor, keyboard and mouse. The PC also provides high-
capacity disk storage for archiving data files and network connections to the 
office or facility. All of the necessary hardware components are present, but 
which software components will ensure that the system performs the way it 
should? 

Software Considerations for Data Acquisition and Analysis 

A good choice for the real-time control processor is usually a DSP or RISC 
processor. It should be freed from tasks not directly related to essential data 
movement, formatting or processing. During real-time operation, there should be 
minimum interaction with the PC. However, before and after real-time operations, 
the Ethernet link can be extremely useful for initializing the real-time hardware, 
configuring modes of operation and moving data between the real-time disk and 
the PC disk file system.  

A proposed software model for the real-time hardware recording system is 
partitioned into real-time and non-real-time domains and joined by Ethernet 
(Figure 2). While this partitioning may seem complex, each software module 
serves a well-defined, essential function to maintain performance while easing 
software development tasks.  

Inside the Real-Time System 

In the real-time software module, the real-time data acquisition system uses an 
RTOS with low latencies and deterministic behavior to guarantee that no data will 
be lost while managing the critical tasks it needs to perform. The board support 
libraries feature well-defined subroutine calls to implement low-level control for all 
of the real-time front-end hardware resources. This includes configuring the A/D 



and D/A converters, setting parameters for the digital up- and down-converters 
and defining modes in the timing section for triggering, gating and 
synchronization.  

The SCSI file system uses RTOS calls to manage real-time transfer to and from 
the local Fibre Channel hard disk. A Fibre Channel protocol layer provides a 
complete, high-speed file system interface suitable for real-time recording and 
playback. Nearly every RTOS also provides a native stack for Ethernet, TCP/IP 
drivers and support for Sockets, a very popular application-layer protocol for 
networks.  

Each of these three resource groups—the board support libraries, the Fibre 
Channel interface and a network socket interface—are integrated by the 
record/play server API into a set of intuitive high-level functions to simplify 
development of custom server applications.  

Acting as the executive in charge, the record/play server application has 
complete access to sending and receiving Ethernet commands and status, 
directing real-time data streams on and off of the Fibre Channel hard disk, and 
controlling all operating parameters and modes of the front-end data acquisition 
hardware. 

With these software components, the real-time hardware has now assumed the 
role of a complete, stand-alone, functional server subsystem. It is capable of 
responding to Ethernet commands that are interpreted by the server application 
and then dispatched efficiently by the server API. When the function is complete, 
the server application can issue an Ethernet message along with any relevant 
parameters about the operation.  

By extending the code in the server application so that it understands and 
implements different or more complex commands, the real-time subsystem can 
acquire new features. These new commands simply implement a new set of calls 
to the existing collection of record/play server API functions. For example, a new 
Ethernet command might fetch data from the Fibre Channel disk and deliver back 
through the Ethernet port. 

Inside the Non-Real-Time Workstation Host PC 

The non-real-time workstation host PC assumes the role of the client, by sending 
and receiving Ethernet messages to and from the real-time server subsystem. 
Virtually all workstation operating systems include native support for Ethernet, 
TCP/IP and Sockets to support message transfers. 



 

The client API manages the Socket message traffic by appropriately forming 
outgoing Ethernet commands so they are understood by the real-time server, 
and interpreting status messages returned by the server. Like the record/play 
server API in the real-time domain, it presents a set of easy-to-use, high-level 
commands suitable for client user applications.  

Additional socket connections deliver Ethernet data from the server into the 
signal viewer. This application delivers a graphical representation of signals on 
the PC screen, providing the operator with an oscilloscope display for viewing 
signal data. This can be useful for checking snapshots of live data from the A/D 
converter before recording, for verifying the live output of a digital down-converter 
and for viewing the data recorded on the Fibre Channel hard drive after 
recording.  

 



Any such operations required by the client application must first be implemented 
in the client API and then supported as formal commands by the server 
application. Of course, the necessary functions for executing those commands 
must be available in the record/play server API. If they are not, additional API 
functions can always be created as required. 

One typical client application is a virtual instrument panel GUI displayed on the 
monitor. With buttons, knobs, sliders, switches, indicators, status windows and 
parameter entry windows, the operator simply uses the mouse and keyboard to 
control operations. Such an application could be written in Visual C, Visual Basic 
or Java to make a visually attractive and functional layout. The GUI would make 
the appropriate calls to the client API according to which buttons are pushed or 
which parameters are entered. 

A larger client application might need a record/playback subsystem as an I/O 
resource. In this case, the larger application might be written in C, C++ or any 
other language supported by the operating system. Like the GUI, it would also 
make calls to the client API to set up the hardware, start and stop the recording 
and then fetch data back into the application. By adding this type of functional 
subsystem that is easy to use and fully characterized, system designers and 
integrators can slash development time and reduce risks. 

The rationale for each of the many software blocks in this software partitioning 
scheme should now be appreciated. Instead of a single monolithic program, the 
modular architecture of this system helps custom application developers take 
advantage of the standardized, well-defined interfaces between the modules to 
add new features, commands and functions. The existing commands and 
subroutine structures offer excellent examples for building new ones that are fully 
compliant with the rest of the system. Operating system revisions, maintenance 
upgrades and ports to different operating systems all benefit from this modularity. 

When it comes to appropriate candidates for the various modules discussed, 
there are many choices available (Figure 3). Client workstation platforms for 
these systems range from hand-held devices, blade servers, embedded PCs, 
laptops and desktop PCs to networked clusters of high-end multiprocessing 
systems. In each case, the processors must support a diverse set of 
infrastructure functions best handled by operating systems such as Windows, 
Linux, Unix or Solaris.  

Client applications and the client API can be written in C or C++, and GUI 
components can use visual versions of these tools. A popular trend of using Java 
for both the client applications and API helps with portability across platforms and 
operating systems. The signal viewer application is a good candidate for 
LabVIEW because the software offers tools specifically oriented to signal 
processing and display and is now available for many workstation environments. 



By its nature, the real-time server system is less heterogeneous and runs under 
operating systems such as VxWorks, eCos or LynxOS. Most of the 
components—including the board support libraries, server application and API—
and the network and disk drivers are all written in C or C++, while some lower-
level functions are coded in assembly language.  

Putting It All Together  

SystemFlow is one implementation of this software framework. It was developed 
to address hardware platforms like the real-time recording/playback system 
discussed above, which is similar to the Pentek RTS2504 Real-Time Recorder 
system. SystemFlow includes all of the software modules described above, with 
client workstation software modules written in Java and LabVIEW and server 
real-time modules written in C. By following this proposed software architecture, 
SystemFlow successfully fulfills two different product objectives for the same 
hardware: a ready-to-use record/playback instrument and a real-time signal 
processing development platform. 

To meet the needs of the record/playback instrument, special enhancements 
were made including a complete virtual instrument GUI, a real-time file manager 
and a full-featured signal viewer. The workstation GUI was written in Java and 
runs under both Windows and Linux (Figure 4). Intuitive buttons, indicators, 
status windows and parameter entry windows are geared for novice users who 
simply want to capture signals and transfer files to their workstation. 



 

A sophisticated file manager is implemented through extensions to both the client 
API, also written in Java, and the server API, written in C. It supports user-named 
files and headers that automatically store important system parameters in each 
recording. The client signal viewer, written in LabVIEW, includes display windows 
for time and frequency domains, dual annotated cursors and automatic 
calculation of critical signal parameters such as harmonic distortion and 
signal/noise ratios. 

To meet the alternate needs of a real-time signal processing development 
platform, SystemFlow includes source code for all software modules created for 
the record/play instrument. System developers can start with this fully functioning 
instrument and incrementally extend, replace or modify each module as required 
to meet their custom requirements.  



For customizing workstation modules, Java source code is provided for the client 
GUI application and client API, and the LabVIEW script is provided for the signal 
viewer.  

For customizing server modules, a complete eCos development environment 
running under Windows offers license-free, open-source tools including the GNU 
compiler, Insight for the GDB debugger, CYGWIN make utilities, an eCos kernel 
configuration utility and a TFTP server. C source code is supplied for the 
record/play server application and server API, the file manager and the socket 
interface. ReadyFlow board support libraries include C source code for the data 
movement, mode and parameter initialization, timing and control of all hardware 
resources on the boards. 

For FPGA code development, Xilinx’s ISE Foundation Tool Suite is installed on 
the Windows workstation. Pentek’s GateFlow FPGA Design Kit contains all ISE 
project files and VHDL source code for the specific hardware boards. In this way, 
FPGA developers can build upon the standard interfaces and structures already 
instantiated. An FPGA code loader utility transfers newly created FPGA 
bitstreams through the Ethernet link into the FPGA. 

All software development tasks for the workstation, the real-time server and the 
FPGAs are performed on the Windows workstation. All real-time server 
development tasks are supported across the Ethernet link through drivers and 
utilities. Except for the optional Xilinx ISE tools and GateFlow Design kit, all of 
the above resources are bundled into the SystemFlow package.  

The unique requirements of each real-time embedded system will drive choices 
in the hardware, the nature and function of the software modules, the operating 
systems and software languages. However, the philosophy of the software 
architecture outlined here should prove valuable in helping to make those 
decisions when starting a new design.  
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